Author: Kemp, M.A.
Paper Title Page
TUP196 SLAC P2 MARX Control System and Regulation Scheme 1193
 
  • D.J. MacNair, M.A. Kemp, K.J.P. Macken, M.N. Nguyen, J.J. Olsen
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the U.S. Department of Energy under contract number DE-AC02-76SF00515
The SLAC P2 MARX P2 Modulator consists of 32 cells charged in parallel by a -4000V supply and discharged in series to provide a -120 KV 140 amp 1.6 millisecond pulse. Each cell has a 350uF main storage capacitor. The voltage on the capacitor will droop approximately 640 volts during each pulse. Each cell will have a boost supply that can add up to 700V to the cell output. This allows the output voltage of the cell to remain constant within 0.1% during the pulse. The modulator output voltage control is determined by the -4KV charging voltage. A voltage divider will measure the modulator voltage on each pulse. The charging voltage will be adjusted by the data from previous pulses to provide the desired output. The boost supply in each cell consists of a 700V buck regulator in series with the main capacitor. The supply uses a lookup table for PWM control. The lookup table is calculated from previous pulse data to provide a constant cell output. The paper will describe the modulator and cell regulation used by the MARX modulator. Measured data from a single cell and three cell string will be included.
 
 
TUP261 The ILC P2 Marx and Application of the Marx Topology to Future Accelerators 1313
 
  • M.A. Kemp, A.L. Benwell, C. Burkhart, J. Hugyik, R.S. Larsen, D.J. MacNair, K.J.P. Macken, M.N. Nguyen, J.J. Olsen
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy under contract DE-AC02-76SF00515.
The SLAC P2 Marx is under development for the ILC linac klystron modulator. Specifications are for an output of 120 kV, 140 A, 1.6 ms pulse width, 5 Hz pulse repetition frequency, and ± 0.5% flat-top. The SLAC P2 Marx builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the P2 Marx’s target application is the ILC, characteristics of the Marx topology make it equally well-suited for different parameter ranges; for example, increased pulse repetition frequency, increased output current, longer pulse width, etc. Marx parameters such as the number of cells, cell capacitance, and component selection can be optimized for the application. This paper provides an overview of the P2 Marx development including design, fabrication progress, and test results for the modulator and sub-assemblies. High-availability features of the modulator such as the diagnostic/prognostic embedded control system and fault-adaptive automatic reconfiguration will be detailed. In addition, the scalability of the Marx topology to other long-pulse parameter ranges will be highlighted. Topology adaptations for several proposed accelerators will be presented.