Paper | Title | Page |
---|---|---|
TUP202 | Non-Scaling FFAG Proton Driver for Project X | 1199 |
|
||
The next generation of high-energy physics experiments requires high intensity protons at multi-GeV energies. Fermilab’s HEP program, for example, requires an 8-GeV proton source to feed the Main Injector to create a 2 MW neutrino beams in the near term and would require a 4 MW pulsed proton beam for a potential Neutrino Factory or Muon Collider in the future. High intensity GeV proton drivers are difficult at best with conventional re-circulating accelerators, encountering duty cycle and space-charge limits in the synchrotron and machine size and stability concerns in the weaker-focusing cyclotrons. Only an SRF linac, which has the highest associated cost and footprint, has been considered. Recent innovations in FFAG design, however, have promoted another re-circulating candidate, the Fixed-field Alternating Gradient accelerator (FFAG), as an attractive, but as yet unexplored, alternative. Its strong focusing optics coupled to large transverse and longitudinal acceptances would serve to alleviate space charge effects and achieve higher bunch charges than possible in a synchrotron and presents an upgradeable option from the 2 MW to the 4 MW program. | ||
WEP204 | An FFAG Accelerator for Project X | 1867 |
|
||
The next generation of high-energy physics experiments requires high intensity protons in the multi-GeV energy range for efficient production of secondary beams. The Fermilab long-term future requires an 8 GeV proton source to feed the Main Injector for a 2 MW neutrino beam source in the immediate future and to provide 4 MW pulsed proton beam for a future neutrino factory or muon collider. We note that a 3GeV cw linac matched to a 3–8 GeV FFAG ring could provide beam for both of these mission needs, as well as the cw 3 GeV experiments, and would be a natural and affordable scenario. We present details of possible scenarios and outline future design and research directions. | ||
THOCN7 | Isochronous (CW) High Intensity Non-scaling FFAG Proton Drivers | 2116 |
|
||
Funding: Work supported in part under SBIR grant DE-FG02-08ER85222 and by Fermi Research Alliance, under contract DEAC02-07CH11359, both with the U.S. Dept. of Energy The drive for higher beam power, duty cycle, and reliable beams at reasonable cost has focused world interest on fixed field accelerators, notably FFAGs. High-intensity GeV proton drivers encounter duty cycle and space-charge limits in the synchrotron and machine size concerns in cyclotrons. A 10-20 MW proton driver is challenging, if even technically feasible, with conventional circular accelerators. Recently, the concept of isochronous orbits has been developed for nonscaling FFAGs using powerful new methodologies in FFAG accelerator design. Isochronous orbits enable the simplicity of fixed RF and, by tailoring the field profile, the FFAG can remain isochronous beyond the energy reach of cyclotrons. With isochronous orbits, the machine proposed here has the high average current advantage and duty cycle of the cyclotron in combination with the strong focusing, smaller losses that are more typical of the synchrotron. With the cyclotron as the current industrial and medical standard, a competing CW FFAG would impact facilities using medical accelerators, proton drivers for neutron production, and accelerator-driven nuclear reactors. This work reports on these new advances. |
||
![]() |
Slides THOCN7 [2.429 MB] | |