Author: Izaola, Z.
Paper Title Page
WEP010 Design of the Bilbao Accelerator Low Energy Extraction Lines 1519
 
  • Z. Izaola, I. Rodríguez
    ESS-Bilbao, Zamudio, Spain
  • E. Abad, I. Bustinduy, R. Martinez, F. Sordo Balbin, D. de Cos
    ESS Bilbao, Bilbao, Spain
  • D.J. Adams, S.J.S. Jago
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
 
  Funding: European Spallation Source - Bilbao
The ESS-Bilbao linac will accelerate H+ and H− beams up to 50 MeV, which need to be transported to three laboratories, where different types of experiments will be conducted. This paper reports on the preliminary design of the transfer line, which is mainly performed based on beam dynamics simulations.
 
 
WEP011 Low Energy Beam Transport Developments for the Bilbao Accelerator 1522
 
  • I. Bustinduy, D. de Cos
    ESS Bilbao, Bilbao, Spain
  • F.J. Bermejo
    Bilbao, Faculty of Science and Technology, Bilbao, Spain
  • V. Etxebarria, J. Portilla
    University of the Basque Country, Faculty of Science and Technology, Bilbao, Spain
  • J. Feuchtwanger, Z. Izaola, J.L. Munoz, I. Rodríguez
    ESS-Bilbao, Zamudio, Spain
 
  Funding: European Spallation Source - Bilbao
In this work we present a future upgrade of the ESS-Bilbao multi-source Low Energy Transport System (LEBT). It consists of a set of solenoids and steering dipoles used to match the characteristics of both ion source beams i.e., the Electron Cyclotron Resonance (ECR) H+/D+ source and the H− Penning source, to the input specifications of the RFQ. Different configurations of the geometry and magnetic fields are studied in order to minimize the emittance growth along the LEBT, while providing the beam specifications required by the RFQ.