Author: Ivanov, V.
Paper Title Page
TUP005 Comparison of Back-scattering Properties of Electron Emission Materials 817
 
  • Z. Insepov, V. Ivanov, S.J. Jokela, M. Wetstein
    ANL, Argonne, USA
 
  We use “microscopic” Monte Carlo (MC) simulations, empirical theories, and comparison with experiments to identify the influence of back-scattered electrons and the saturation effect on the emissive properties of materials and to study the gain and transit times for various microchannel plates (MCPs). We have applied this method to Al2O3 and MgO emissive materials of various thickness and surface quality. The experimental secondary emission yield (SEY) data were obtained at normal electron impacts and were used as the reference data for adjusting our MC simulations. The SEY data were calculated at oblique angles of the primary electrons in the interval of 0-80 degrees. The energy dependence of backscattered electron coefficients (BSCs) for various primary electron incidence angles was calculated by MC for both materials, and the results were compared with experimental “average” values obtained in the literature. Both SEY and BSC data were used as input files to our “macroscopic” trajectory simulation, which models MCP amplifiers as whole devices and is capable of gain and transit time calculations.  
 
MOP036 Epicyclic Twin-Helix Ionization Cooling Simulations 163
 
  • A. Afanasev
    Hampton University, Hampton, Virginia, USA
  • Y.S. Derbenev, V.S. Morozov
    JLAB, Newport News, Virginia, USA
  • V. Ivanov, R.P. Johnson
    Muons, Inc, Batavia, USA
 
  Funding: Supported in part by DOE SBIR grant DE-SC0005589
Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. For the implementation of PIC, we earlier developed an epicyclic twin-helix channel with correlated behavior of the horizontal and vertical betatron motions and dispersion. We now insert absorber plates with short energy-recovering units located next to them at the appropriate locations in the twin-helix channel. We first demonstrate conventional ionization cooling in such a system with the optics uncorrelated. We then adjust the correlated optics state and induce a parametric resonance to study ionization cooling under the resonant condition.