Author: Gulley, M.S.
Paper Title Page
THP045 Proposed Facility Layout for MaRIE 2202
 
  • J.A. O'Toole, M.J. Bodelson, J.L. Erickson, R.W. Garnett, M.S. Gulley
    LANL, Los Alamos, New Mexico, USA
 
  The MaRIE (Matter-Radiation Interactions in Extremes) experimental facility will be used to advance materials science by providing the tools scientists need to develop materials that will perform predictably and on demand for currently unattainable lifetimes in extreme environments. The Multi-Probe Diagnostic Hall (MPDH) will create probes of matter using both photon- and proton-based diagnostics. The Fission and Fusion Materials Facility (F3) will provide capabilities for materials irradiation studies, subjecting materials to radiation extremes that are present in fission and fusion environments. The Making, Measuring, and Modeling Materials (M4) Facility will foster discovery by design of next-generation materials that will perform with better durability in extreme environments. MaRIE features a 20-GeV electron linac for an X-ray driver. Five X-ray beams will be delivered to the experimental areas. The facility will also deliver an electron beam to MPDH. The existing LANSCE proton beam will be delivered to MPDH and F3 in addition to the existing LANSCE areas. Multiple high power lasers will deliver beams to MPDH. This paper will provide an overview of the MaRIE facility layout.  
 
THP163 Pre-Conceptual Design Requirements for an X-Ray Free Electron Laser for the MaRIE Experimental Facility at LANL 2417
 
  • R.L. Sheffield, C.W. Barnes, M.A. Bourke, R.W. Garnett, M.S. Gulley, A.J. Taylor
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work performed under the auspices of the U.S. Department of Energy, under contract DE-AC52-06NA25396.
The MaRIE (Matter-Radiation Interactions in Extremes) experimental facility will be used to advance materials science by providing the tools scientists need to develop materials that will perform predictably and on demand for currently unattainable lifetimes in extreme environments. The MaRIE facilities, the Multi-Probe Diagnostic Hall (MPDH), the Fission and Fusion Materials Facility (F3), and the Making, Measuring, and Modeling Materials (M4) Facility will each have experimental needs for one or more high-energy X-ray beam probes. MPDH will also require access to an electron beam probe. These probe beams can be created using a 20-GeV electron linac, both to serve as a source of electrons and as a driver for a set of up to five X-ray undulators for the high-energy X-rays. Because of space considerations at the facility, a high-gradient design is being investigated that will use a normal-conducting linac and X-band RF systems. Experimental requirements are also calling for relatively long pulse lengths, as well as interleaving high- and low-charge electron bunches. This paper will provide an overview of how an XFEL would address the scientific requirements for MaRIE.