Author: Ginsburg, C.M.
Paper Title Page
TUP033 Engineering Design of Vertical Test Stand Cryostat 874
 
  • S.K. Suhane, S. Das, P.D. Gupta, S.C. Joshi, P.K. Kush, S. Raghvendra, N.K. Sharma
    RRCAT, Indore (M.P.), India
  • R.H. Carcagno, C.M. Ginsburg, C.S. Mishra, J.P. Ozelis, R. Rabehl, C. Sylvester
    Fermilab, Batavia, USA
  • V.C. Sahni
    Homi Bhbha National Institute (HBNI), DAE, Mumbai, India
 
  Under Indian Institutions and Fermilab collaboration Raja Ramanna Centre for Advanced Technology and Fermi Lab are jointly developing 2K Vertical Test Stand (VTS) cryostats for testing SCRF cavities. The VTS cryostat has been designed for a large testing aperture of 34 inches for testing of 325 MHz Spoke resonators, 650 MHz and 1.3 GHz multi-cell SCRF cavities for Project-X at FNAL and for VTS facility at RRCAT. VTS cryostat comprises of liquid helium (LHe) vessel with internal magnetic shield, top insert plate equipped with cavity support stand and radiation shield, liquid nitrogen (LN2) shield and vacuum vessel with external magnetic shield. . The engineering design and analysis of VTS cryostat has been carried out using ASME B&PV code and FEA. Design of internal and external magnetic shields was performed to limit the magnetic field inside LHe vessel, at the cavity surface <10 mG. Thermal analysis for LN2 shield has been performed to check the effectiveness of LN2 cooling.  
 
TUP069 Status of the Mechanical Design of the 650 MHz Cavities for Project X 943
 
  • S. Barbanotti, M.S. Champion, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, T.J. Peterson, L. Ristori, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  In the high-energy section of the Project X Linac, acceleration of H- ions takes place in superconducting cavities operating at 650 MHz. Two families of five-cell elliptical cavities are planned: β = 0.61 and β = 0.9. A specific feature of the Project X Linac is low beam loading, and thus, low bandwidth and higher sensitivity to microphonics. Efforts to optimize the mechanical design of the cavities to improve their mechanical stability in response to the helium bath pressure fluctuations will be presented. These efforts take into account constraints such as cost and ease of fabrication. Also discussed will be the overall design status of the cavities and their helium jackets.  
 
THOCS6 Progress in Cavity and Cryomodule Design for the Project X Linac 2133
 
  • M.S. Champion, S. Barbanotti, M.H. Foley, C.M. Ginsburg, I.G. Gonin, C.J. Grimm, J.S. Kerby, S. Nagaitsev, T.H. Nicol, T.J. Peterson, L. Ristori, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The continuous wave 3 GeV Project X Linac requires the development of two families of cavities and cryomodules at 325 and 650 MHz. The baseline design calls for three types of superconducting single-spoke resonators at 325 MHz having betas of 0.11, 0.22, and 0.42 and two types of superconducting five-cell elliptical cavities having betas of 0.61 and 0.9. These cavities shall accelerate a 1 mA H beam initially and must support eventual operation at 4 mA. The electromagnetic and mechanical designs of the cavities are in progress and acquisition of prototypes is planned. The heat load to the cryogenic system is up to 25 W per cavity in the 650 MHz section, thus segmentation of the cryogenic system is a major issue in the cryomodule design. Designs for the two families of cryomodules are underway.  
slides icon Slides THOCS6 [2.241 MB]  
 
FROBS5 1.3 GHz Superconducting RF Cavity Program at Fermilab 2586
 
  • C.M. Ginsburg, T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, L.D. Cooley, C.A. Cooper, M.H. Foley, M. Ge, C.J. Grimm, E.R. Harms, A. Hocker, R.D. Kephart, T.N. Khabiboulline, J.R. Leibfritz, A. Lunin, J.P. Ozelis, Y.M. Pischalnikov, A.M. Rowe, W. Schappert, D.A. Sergatskov, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy.
At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules, for Project X, an International Linear Collider, or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
 
slides icon Slides FROBS5 [3.749 MB]