Author: Fisher, S.E.
Paper Title Page
MOP127 The LLNL/UCLA High Gradient Inverse Free Electron Laser Accelerator 331
 
  • S.G. Anderson, G.G. Anderson, M. Betts, S.E. Fisher, D.J. Gibson, S.S.Q. Wu
    LLNL, Livermore, California, USA
  • J.T. Moody, P. Musumeci, A.M. Tremaine
    UCLA, Los Angeles, California, USA
 
  Funding: This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
We describe the Inverse Free Electron Laser (IFEL) accelerator currently under construction at LLNL in collaboration with UCLA. This project combines a strongly tapered undulator with a 10 Hz repetition rate, Ti:Sapphire laser to produce > 200 MeV/m average accelerating gradient over the 50 cm long undulator. The project goal is to demonstrate IFEL accelerator technology that preserves the input beam quality and is well suited for future light source applications. We discuss the accelerator design focusing on issues associated with the use of 800 nm, 100 fs laser pulses. Three-dimensional simulations of the IFEL interaction are presented which guide the choice of laser and electron beam parameters. Finally, experimental plans and potential future developments are discussed.