Author: Fedurin, M.G.
Paper Title Page
TUOBN3 Witness Bunch Acceleration in a Multi-bunch PWFA 712
 
  • P. Muggli, B.A. Allen, Y. Fang
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, R. Malone, C. Swinson, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by US DoE and NSF
We present initial experimental results showing the excitation of plasma wakefields by a train of two drive bunches. These wakefields are experienced by a trailing witness bunch that gains energy while retaining a finite energy spread. These well controlled plasma wakefield accelerator (PWFA) experiments are important to test the theory of the PWFA and serve as a testbed for techniques that will be used in high energy experiments.
 
slides icon Slides TUOBN3 [5.432 MB]  
 
WEP107 CSR Shielding Experiment 1677
 
  • V. Yakimenko, A.V. Fedotov, M.G. Fedurin, D. Kayran
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • P. Muggli
    USC, Los Angeles, California, USA
 
  It is well known that the emission of coherent synchrotron radiation (CSR) in a dipole magnets leads to increase in beam energy spread and emittance. At the Brookhaven National Laboratory Accelerator Test Facility (ATF) we study the suppression of CSR emission affect on electron beam in a dipole magnet by two vertically spaced conducting plates. The gap between the plates is controlled by four actuators and could be varied from 0 to 14 mm. Our experimental results show that closing the plates significantly reduces both the beam energy loss and CSR-induced beam energy spread. In this paper we present selected results of the experiment and compare then with rigorous analytical theory.  
 
WEP126 Progress in Experimental Study of Current Filamentation Instability 1719
 
  • B.A. Allen, P. Muggli
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • J.L. Martins, L.O. Silva
    IPFN, Lisbon, Portugal
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by Department of Energy and National Science Foundation
Current Filamentation Instability, CFI, is of central importance for the propagation of relativistic electron beams in plasmas. CFI could play an important role in the generation of magnetic fields and radiation in the after-glow of gamma ray bursts and also in energy transport for the fast-igniter inertial confinement fusion concept. Simulations were conducted with the particle-in-cell code QuickPIC* for e- beam and plasma parameters at the Brookhaven National Laboratory – Accelerator Test Facility, BNL-ATF. Results show that for a 2cm plasma the instability reaches near saturation. An experimental program was proposed and accepted at the BNL-ATF and an experiment is currently underway. There are three components to the experimental program: 1) imaging of the beam density/filaments at the exit from the plasma, 2) measurement and imaging of the transverse plasma density gradient and measurement of the magnetic field and 3) identifying the radiation spectrum of the instability. Preliminary results from phase one will be presented along with the progress and diagnostic design for the following phases of the experiment.
* C. Huang et. al. Journal of Computational Physics 217, 2(2006)