Author: Fang, Y.
Paper Title Page
MOP158 Numerical Study of Plasma Wakefields Excited by a Train of Electron Bunches 391
 
  • Y. Fang, P. Muggli
    USC, Los Angeles, California, USA
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  Funding: Work supported by the US department of Energy
We study numerically the excitation of plasma wakefields by a train of electron bunches using the UCLA particle-in-cell code Quickpic*. We aim to find an optimal regime that combines both the advantages of linear and non-linear plasma wakefield accelerator. On one hand, the longitudinal electric field excited by individual bunches add as in the linear region, and the transformer ratio can be maximized (i.e. much larger than 2) by adjusting the number of particles in the bunches as well as their distance. On the other hand, the bunches create large wakefield independent of transverse sizes evolution while propagating through the plasma as in the non-linear region. In principle, such a scheme can multiply the energy of the witness bunch following the drive bunch train in a single plasma wakefield accelerating stage. The parameters for electron bunches are chosen based on the current experiment at the Brookhaven National Laboratory Accelerator Test Facility (ATF), where this scheme can be tested. Detailed simulation results will be presented.
* C. Huang, J. Comp. Phys.
 
 
TUOBN3 Witness Bunch Acceleration in a Multi-bunch PWFA 712
 
  • P. Muggli, B.A. Allen, Y. Fang
    USC, Los Angeles, California, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, R. Malone, C. Swinson, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by US DoE and NSF
We present initial experimental results showing the excitation of plasma wakefields by a train of two drive bunches. These wakefields are experienced by a trailing witness bunch that gains energy while retaining a finite energy spread. These well controlled plasma wakefield accelerator (PWFA) experiments are important to test the theory of the PWFA and serve as a testbed for techniques that will be used in high energy experiments.
 
slides icon Slides TUOBN3 [5.432 MB]