Author: Dooling, J.C.
Paper Title Page
MOP273 Calibration and Simulation of the LCLS Undulator Beam Loss Monitors using APS Accelerators 618
 
  • J.C. Dooling, W. Berg, A.R. Brill, L. Erwin, B.X. Yang
    ANL, Argonne, USA
  • A.S. Fisher, H.-D. Nuhn, M. Santana-Leitner
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under contract number DE-AC02-06CH11357
Electrons scattered by alumina ceramic transverse beam profile monitors inserted in the Advanced Photon Source (APS) booster-to-storage ring (BTS) transfer line are used to generate C ̆erenkov light for calibration of beam loss monitors (BLMs) installed in the Linac Coherent Light Source (LCLS) undulator beamline. In addition, gas bremsstrahlung (GB) photons generated by 7-GeV electrons in the APS sector 35 storage ring straight section are used to create pair-production electrons for measurement and calibration purposes. Both cases are modeled with the particle-matter interaction program MARS. The realized tuning fork geometry of the BLM exhibits regions of greater sensitivity in the radiator. Transverse GB beam scans have provided uniformity and sensitivity data throughout the volume of the radiator. Comparisons between predicted and measured signal strengths and thermoluminescent dosimeter readings are given and shown to be in reasonable agreement.