Author: Den Hartog, P.K.
Paper Title Page
MOP189 Progress in the Development of a Grazing-incidence Insertion Device X-ray Beam Position Monitor 441
 
  • B.X. Yang, G. Decker, P.K. Den Hartog, S.-H. Lee, K.W. Schlax
    ANL, Argonne, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
Recently, a grazing-incidence insertion device x-ray beam position monitor (GRID-XBPM) was proposed for the intense x-ray beam from the future APS undulators [*]. By combining the function of limiting aperture with the XBPM, it increases the power-bearing capacity of the XBPM and, at the same time, eliminates the problem of relative alignment of the two critical components in the beamline. Furthermore, by imaging the hard x-ray fluorescence footprint on the collimator, the XBPM is immune to the soft x-ray background, and its accuracy is improved at larger gap settings. In addition to these advantages, the GRID-XBPM can also be implemented to measure center-of-mass of the x-ray fluorescence footprint when pinhole-camera-like optics are used for position readout*. This offers a solution for long-standing XBPM design issues for elliptical undulators, which have a donut-shaped power distribution. In this work, we report design progress for the GRID-XBPM for the high-power elliptically polarized undulator planned for the APS intermediate energy x-ray (IEX) beamline. Computer simulation of its performance and experimental tests from a scale model system will also be presented.
* B.X. Yang, G. Decker, S. H. Lee, and P. Den Hartog, Beam Instrumentation Workshop, Santa Fe, 2010, to be published.
 
 
THOBS5 Extruded Aluminum Vacuum Chambers for Insertion Devices 2093
 
  • E. Trakhtenberg, P.K. Den Hartog, G.E. Wiemerslage
    ANL, Argonne, USA
 
  Funding: Work is supported by U.S. Department of Energy, Office of Science, Office of Basic Energy Science under Contract No. DE-AC02-06CH 11357.
Extruded aluminum vacuum chambers are commonly used in the storage rings of synchrotron facilities. For 18 years the APS has designed and fabricated vacuum chambers made from extruded aluminum for use with insertion devices at the APS and for use at other facilities including BESSY II, the Swiss Light Source (SLS), the Canadian Light Source (CLS), the TESLA Test Facility (TTF), and the European Synchrotron Radiation Facility (ESRF). Most recently extruded aluminum chambers were developed for LCLS with a 0.5-mm wall thickness along the entire 3.8-meter length. Surface roughness for the LCLS vacuum chamber interior was reduced, on average, to less than 300 nm through an abrasive flow polishing technique. Currently under development is an extruded aluminum chamber for the superconducting undulator at the APS. So far, 120 vacuum chambers have been produced with these methods. Results of the development, construction, and manufacturing of extruded aluminum vacuum chambers with small vertical apertures and thin walls are presented. The design, technological challenges, and positive and negative experiences are discussed.
 
slides icon Slides THOBS5 [7.855 MB]