Author: Cooley, L.D.
Paper Title Page
TUP085 Assumptions for the RF Losses in the 650 MHz Cavities of the Project X Linac 985
 
  • A. Romanenko, L.D. Cooley, J.P. Ozelis, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, USA
 
  The requirements for the FNAL Project X cryogenic system depend on the dynamic heat loads of 650 MHz cavities. The heat load is in turn determined by quality factors of the cavities at the operating gradient. In this contribution we use the available experimental data to analyze quality factors achievable in 650 MHz linac cavities taking into account different RF losses contributions such as BCS resistance, residual resistance and a medium field Q-slope.  
 
THOCS2
SRF Materials R&D  
 
  • L.D. Cooley
    Fermilab, Batavia, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The push for higher yield of high-gradient SRF cavities has recently received support from a nationwide multi-disciplinary program to understand limitations of superconducting cavities and improve their fabrication and processing. Materials science has revealed deeper understanding of how oxidation, cold work, hydrogen, and roughness affect both fundamental behavior as well as real performance after different processing stages. Processing advances, such as optical inspection, laser re-melting, tumbling, and atomic layer deposition, provide opportunities to optimize the technology, benefiting the design of future SRF-based accelerators such as ILC or Project X.
 
slides icon Slides THOCS2 [4.470 MB]  
 
FROBS5 1.3 GHz Superconducting RF Cavity Program at Fermilab 2586
 
  • C.M. Ginsburg, T.T. Arkan, S. Barbanotti, H. Carter, M.S. Champion, L.D. Cooley, C.A. Cooper, M.H. Foley, M. Ge, C.J. Grimm, E.R. Harms, A. Hocker, R.D. Kephart, T.N. Khabiboulline, J.R. Leibfritz, A. Lunin, J.P. Ozelis, Y.M. Pischalnikov, A.M. Rowe, W. Schappert, D.A. Sergatskov, A.I. Sukhanov, G. Wu
    Fermilab, Batavia, USA
 
  Funding: Work supported by Fermi Research Alliance, LLC under contract DE-AC02-07CH11359 with the U.S. Department of Energy.
At Fermilab, 9-cell 1.3 GHz superconducting RF (SRF) cavities are prepared, qualified, and assembled into cryomodules, for Project X, an International Linear Collider, or other future projects. The 1.3 GHz SRF cavity program includes targeted R&D on 1-cell 1.3 GHz cavities for cavity performance improvement. Production cavity qualification includes cavity inspection, surface processing, clean assembly, and one or more cryogenic low-power CW qualification tests which typically include performance diagnostics. Qualified cavities are welded into helium vessels and are cryogenically tested with pulsed high-power. Well performing cavities are assembled into cryomodules for pulsed high-power testing in a cryomodule test facility, and possible installation into a beamline. The overall goals of the 1.3 GHz SRF cavity program, supporting facilities, and accomplishments are described.
 
slides icon Slides FROBS5 [3.749 MB]