Author: Caspi, S.
Paper Title Page
TUP170 Mechanical Design of an Alternate Structure for LARP Nb3Sn Quadrupole Magnets for LHC 1142
 
  • J. Schmalzle, M. Anerella, J.P. Cozzolino, P. Kovach, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • G. Ambrosio, M.J. Lamm
    Fermilab, Batavia, USA
  • S. Caspi, H. Felice, P. Ferracin, G.L. Sabbi
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
An alternate structure for the 120mm Nb3Sn quadrupole magnet is presently under development for use in the upgrade for LHC at CERN. The design aims to build on existing technology developed in LARP with the LQ and HQ magnets and to further optimize the features required for operation in the accelerator. The structure includes features for maintaining mechanical alignment of the coils to achieve the required field quality. It also includes a helium containment vessel and provisions for cooling with 1.9k helium. The development effort includes the assembly of a six inch model to verify required coil load is achieved. Status of the R&D effort and an update on the magnet design, including its incorporation into the design of a complete one meter long cold mass is presented.
 
 
TUP174 Warm Magnetic Field Measurements of LARP HQ Magnet 1154
 
  • X. Wang, S. Caspi, D.W. Cheng, D.R. Dietderich, H. Felice, P. Ferracin, R.R. Hafalia, J.M. Joseph, J. Lizarazo, M. Martchevskii, C. Nash, G.L. Sabbi, C. Vu
    LBNL, Berkeley, California, USA
  • G. Ambrosio, R. Bossert, G. Chlachidze, J. DiMarco, V. Kashikhin
    Fermilab, Batavia, USA
  • J. Schmalzle, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  The US-LHC Accelerator Research Program is develop- ing and testing a high-gradient quadrupole (HQ) magnet, aiming at demonstrating the feasibility of Nb3Sn technologies for the LHC luminosity upgrade. The 1 m long HQ magnet has a 120 mm bore with a conductor-limited gradient of 219 T/m at 1.9 K and a peak field of 15 T. HQ includes accelerator features such as alignment and field quality. Here we present the magnetic measurement results obtained at LBNL with a constant current of 30 A. A 100 mm long circuit-board rotating coil developed by FNAL was used and the induced voltage and flux increment were acquired. The measured b6 ranges from 0.3 to 0.5 units in the magnet straight section at a reference radius of 21.55 mm. The data reduced from the numerical integration of the raw voltage agree with those from the fast digital integrators.