Author: Cary, J.R.
Paper Title Page
MOP123 Colliding Pulse Injection Control in a Laser-Plasma Accelerator 325
 
  • C.G.R. Geddes, M. Chen, E. Esarey, W. Leemans, N.H. Matlis, D.E. Mittelberger, K. Nakamura, G.R.D. Plateau, C.B. Schroeder, C. Tóth
    LBNL, Berkeley, California, USA
  • D.L. Bruhwiler, J.R. Cary, E. Cormier-Michel, B.M. Cowan
    Tech-X, Boulder, Colorado, USA
 
  Funding: This work is supported by the U.S. Department of Energy, National Nuclear Security Administration, NA-22, and in part by the Office of Science under Contract No. DE-AC02-05CH11231.
Control of injection into a high gradient laser-plasma accelerator is presented using the beat between two ’colliding’ laser pulses to kick electrons into the plasma wake accelerating phase. Stable intersection and performance over hours of operation were obtained using active pointing control. Dependence of injector performance on laser and plasma parameters were characterized in coordination with simulations. By scanning the intersection point of the lasers, the injection position was controlled, mapping the acceleration length. Laser modifications to extend acceleration length are discussed towards production of tunable stable electron bunches as needed for applications including Thomson gamma sources and high energy colliders.
 
 
WEP112 Accurate Simulation of the Electron Cloud in the Fermilab Main Injector with VORPAL 1692
 
  • P. Lebrun, P. Spentzouris
    Fermilab, Batavia, USA
  • J.R. Cary, P. Stolz, S.A. Veitzer
    Tech-X, Boulder, Colorado, USA
 
  Precision simulations of the electron cloud at the Fermilab Main Injector (MI) have been studied using the plasma simulation code VORPAL. Fully 3D and self consistent solutions that includes Yee-type E.M. field maps, electron spatial distributions and the time evolution of the cloud with respect to the bunch structure in the MI. The microwave absorption experiment has been simulated in detail and the response of the antennas has been derived from the VORPAL's pseudo-potential data. Based on the results of these simulations and the ongoing experimental program, two distinct new experimental techniques are proposed. The first one is based on the use BPM plates placed in dipole fields and that are made of material(s) for which the secondary emission is well characterized. The second technique would be based on the optical, or ultra-violet, detection of the radiation emitted (inverse photo-electric effect) when the cloud interacts with the inner surface of the beam pipe. As the microwave absorption experiment, this techique is non-invasise and has the advantage of providing spatial images of the cloud as well as accurate timing (ns) information.  
 
WEP161 Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes 1791
 
  • D.A. Dimitrov, R. Busby, J.R. Cary, D.N. Smithe
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U. S. Department of Energy under the DE-SC0004431 grant.
Emission of electrons from a diamond-amplified cathode was recently demonstrated*. This experiment was based on a promising new concept** for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties.
* X. Chang et al., Electron Beam Emission from a Diamond-Amplified Cathodes, to appear in Phys. Rev. Lett. (2010).
** I. Ben-Zvi et al., Secondary emission enhanced photoinjector, Rep. C-A/AP/149, BNL (2004).