Author: Caldwell, A.
Paper Title Page
MOP017 A Sphere Cooler Scheme for Muon Cooling 139
 
  • Y. Bao
    MPI, Muenchen, Germany
  • A. Caldwell, D. Greenwald
    MPI-P, München, Germany
 
  Muon cooling is the greatest obstacle for producing an intensive muon beam. The frictional cooling method holds promise for delivering low-energy muon beams with narrow energy spreads. We outline a sphere cooler scheme based on frictional cooling to effectively produce such a “cold” muon beam. As an example source, we take the parameters of a surface muon source available at the Paul Scherrer Institute. Simulation results show that the sphere cooler has an efficiency of 50% to produce a “cold” muon beam with an energy spread of 0.9 keV. The high quality beam can potentially meet the requirements of a neutrino factory or a muon collider.  
 
MOP018 The Impact of Beam Emittance on BSM-Physics Discovery Potential at a Muon Collider 142
 
  • D. Greenwald, A. Caldwell
    MPI-P, München, Germany
 
  A muon collider would allow for high precision probing of the multi-TeV energy regime and the potential discovery of new physics. Background radiation from electrons from the decay of muons interacting with the beam pipes near the interaction point (IP) places limitations on the design of a muon-collider detector. In particular, conical shielding extending out from the IP along the outside of the beam pipes prevents detection of particles at small angles to the beam line. For a given luminosity, bunches with smaller emittances will have fewer muons and therefore smaller background levels, allowing for shielding with shallower angles. The angular-acceptance dependence of the discovery potential for Kaluza-Klein excitations of the standard model particles is presented as a motivation for improved beam-cooling techniques that can achieve high luminosities with small bunch populations.  
 
MOP108 Simulation Study of Proton-Driven PWFA Based on CERN SPS Beam 301
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • W.B. Mori
    UCLA, Los Angeles, California, USA
 
  We have proposed an experimental study of the proton-driven plasma wakefield acceleration by using proton beam from the CERN SPS. In this paper, the particle-in-cell (PIC) simulation of the SPS beam-driven plasma wakefield acceleration is introduced. By varying the beam parameters and plasma parameters, simulation shows that electric fields in excess of 1 GeV/m can be achieved.  
 
TUOBN5 A Proposed Experimental Test of Proton-Driven Plasma Wakefield Acceleration Based on CERN SPS 718
 
  • G.X. Xia, A. Caldwell
    MPI-P, München, Germany
  • W. An, C. Joshi, W. Lu, W.B. Mori
    UCLA, Los Angeles, California, USA
  • R.W. Assmann, F. Zimmermann
    CERN, Geneva, Switzerland
  • R.A. Fonseca, N.C. Lopes, J. Vieira
    Instituto Superior Tecnico, Lisbon, Portugal
  • C. Huang
    LANL, Los Alamos, New Mexico, USA
  • K.V. Lotov
    BINP SB RAS, Novosibirsk, Russia
  • P. Muggli
    USC, Los Angeles, California, USA
  • A.M. Pukhov
    HHUD, Dusseldorf, Germany
  • L.O. Silva
    IPFN, Lisbon, Portugal
 
  Proton-driven plasma wakefield acceleration (PDPWA) has been proposed as an approach to accelerate electron beam to TeV energy regime in a single passage of plasma channel. An experimental test is recently proposed to demonstrate the capability of PDPWA by using proton beams from the CERN SPS. The preparation of experiment is introduced. The particle-in-cell simulation results based on realistic beam parameters are presented.  
slides icon Slides TUOBN5 [2.208 MB]