Author: Busby, R.
Paper Title Page
WEP161 Modeling and Simulations of Electron Emission from Diamond-Amplified Cathodes 1791
 
  • D.A. Dimitrov, R. Busby, J.R. Cary, D.N. Smithe
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, E. Wang, Q. Wu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U. S. Department of Energy under the DE-SC0004431 grant.
Emission of electrons from a diamond-amplified cathode was recently demonstrated*. This experiment was based on a promising new concept** for generation of high-current, high-brightness, and low thermal emittance electron beams. The measurements from transmission and emission experiments have shown the potential to realize the diamond-amplified cathode concept. However, the results indicate that the involved physical properties should be understood in greater detail to build diamond cathodes with optical properties. We have already made progress in understanding the secondary electron generation and charge transport in diamond with the models we implemented in the VORPAL computational framework. We have been implementing models for electron emission from diamond and will present results from 3D VORPAL simulations with the integrated capabilities on generating electrons and holes, initiated by energetic primary electrons, propagation of the charge clouds, and then the emission of electrons into diamond. We will discuss simulation results on the dependence of the electron emission on diamond surface properties.
* X. Chang et al., Electron Beam Emission from a Diamond-Amplified Cathodes, to appear in Phys. Rev. Lett. (2010).
** I. Ben-Zvi et al., Secondary emission enhanced photoinjector, Rep. C-A/AP/149, BNL (2004).
 
 
WEP162 Modeling of Diamond Based Devices for Beam Diagnostics 1794
 
  • D.A. Dimitrov, R. Busby
    Tech-X, Boulder, Colorado, USA
  • I. Ben-Zvi, J.W. Keister, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • E.M. Muller
    Stony Brook University, Stony Brook, USA
 
  Funding: The authors wish to acknowledge the support of the U.S. Department of Energy (DOE) under grants DE-SC0004584 (Tech-X Corp.) and DE-FG02-08ER41547 (BNL).
Beamlines at new light sources, such as the National Synchrotron Light Source II will operate at flux levels beyond the saturation level of existing diagnostics, necessitating the development of new devices. Currently, there is no detector which can span the entire flux range that is possible even in a second generation light source and will become crucial for next generation light sources. One new approach* is a diamond-based detector that will be able to monitor beam position, flux and timing to much better resolution. Furthermore, this detector also has linear response to flux over 11 orders of magnitude. However, the successful development of the detector requires thorough understanding and optimization of the physical processes involved. We will discuss the new modeling capabilities we have been implementing in the VORPAL 3D code to investigate the effects of charge generation due to absorption of x-ray photons, transport, and charge trapping. We will report results from VORPAL simulations on charge collection and how it depends on applied field, charge trapping, and the energy of absorbed photons.
*J. W. Keister, J. Smedley, D. A. Dimitrov, and R. Busby, Charge Collection and Propagation in Diamond X-ray Detectors, IEEE Transactions on Nuclear Science, 57, 2400 (2010).