Author: Benwell, A.L.
Paper Title Page
TUP259 A Solid-State Nanosecond Beam Kicker Modulator Based on the DSRD Switch 1310
 
  • A.L. Benwell, R. Akre, C. Burkhart, A. Krasnykh, T. Tang
    SLAC, Menlo Park, California, USA
  • A. Kardo-Sysoev
    IOFFE, St. Petersburg, Russia
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC02-76SF00515
A fast solid-state beam kicker modulator is under development at the SLAC National Accelerator Laboratory. The program goal is to develop a modulator that will deliver 4 ns, ±5 kV pulses to the ATF2 damping ring beam extraction kicker. The kicker is a 50 Ω, bipolar strip line, 60 cm long, fed at the downstream end and terminated at the upstream end. The bunch spacing in the ring is 5.6 ns, bunches are removed from the back end of the train, and there is a gap of 103.6 ns before the next train. The modulator design is based on an opening switch topology that uses Drift Step Recovery Diodes as the opening switches. The design and results of the modulator development are discussed.
 
 
TUP261 The ILC P2 Marx and Application of the Marx Topology to Future Accelerators 1313
 
  • M.A. Kemp, A.L. Benwell, C. Burkhart, J. Hugyik, R.S. Larsen, D.J. MacNair, K.J.P. Macken, M.N. Nguyen, J.J. Olsen
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the US Department of Energy under contract DE-AC02-76SF00515.
The SLAC P2 Marx is under development for the ILC linac klystron modulator. Specifications are for an output of 120 kV, 140 A, 1.6 ms pulse width, 5 Hz pulse repetition frequency, and ± 0.5% flat-top. The SLAC P2 Marx builds upon the success of the P1 Marx, which is currently undergoing lifetime evaluation. While the P2 Marx’s target application is the ILC, characteristics of the Marx topology make it equally well-suited for different parameter ranges; for example, increased pulse repetition frequency, increased output current, longer pulse width, etc. Marx parameters such as the number of cells, cell capacitance, and component selection can be optimized for the application. This paper provides an overview of the P2 Marx development including design, fabrication progress, and test results for the modulator and sub-assemblies. High-availability features of the modulator such as the diagnostic/prognostic embedded control system and fault-adaptive automatic reconfiguration will be detailed. In addition, the scalability of the Marx topology to other long-pulse parameter ranges will be highlighted. Topology adaptations for several proposed accelerators will be presented.