Author: Benedetti, C.
Paper Title Page
MOP082 Modeling a 10 GeV Laser-Plasma Accelerator with INF&RNO 250
 
  • C. Benedetti, E. Esarey, W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
The numerical modeling code INF&RNO (INtegrated Fluid & paRticle simulatioN cOde, pronounced "inferno") is an efficient 2D cylindrical code to model the interaction of a short laser pulse with an underdense plasma. The code is based on an envelope model for the laser while either a particle-in-cell (PIC) or a fluid description can be used for the plasma. The effect of the laser pulse on the plasma is modeled with the time-averaged ponderomotive force. These and other features allow for a significant speedup compared to standard full PIC simulations while still retaining physical fidelity. A boosted Lorentz frame (BLF) modeling capability has been introduced within the fluid framework enhancing the performance of the code. An example of a 10 GeV laser-plasma accelerator modeled using INF&RNO in the BLF is presented.
 
 
MOP083 Plasma Wake Excitation by Lasers or Particle Beams 253
 
  • C.B. Schroeder, C. Benedetti, E. Esarey, C.G.R. Geddes, W. Leemans, C. Tóth
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by the Office of Science, Office of High Energy Physics, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
Plasma accelerators may be driven by the ponderomotive force of an intense laser or the space-charge force of a charged particle beam. Plasma wake excitation driven by lasers or particle beams is examined, and the implications of the different physical excitation mechanisms for accelerator design are discussed.