Author: Astefanous, C.M.
Paper Title Page
TUP269 Design and Analysis of SRF Cavities for Pressure Vessel Code Compliance 1322
 
  • C.M. Astefanous, J.P. Deacutis, D. Holmes, T. Schultheiss
    AES, Medford, NY, USA
  • I. Ben-Zvi
    Stony Brook University, Stony Brook, USA
  • W. Xu
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work was funded by Stony Brook University under contract number 52702.
Advanced Energy Systems, Inc. is under contract to Stony Brook University to design and build a 704 MHz, high current, Superconducting RF (SRF) five cell cavity to be tested at Brookhaven National Laboratory. This cavity is being designed to the requirements of the SPL at CERN while also considering operation with electrons for a potential RHIC upgrade at Brookhaven. The β=1 cavity shape, developed by Brookhaven, is designed to accelerate 40 mA of protons at an accelerating field of 25 MV/m with a Q0 > 8·109 at 2K while providing excellent HOM damping for potential electron applications. 10-CFR-851 states that all pressurized vessels on DOE sites must conform to applicable national consensus codes or, if they do not apply, provide an equivalent level of safety and protection. This paper presents how the 2007 ASME Boiler and Pressure Vessel Code Section VIII, Division 2 requirements can be used to satisfy the DOE pressure safety requirements for a non-code specified material (niobium) pressure vessel.
 
 
TUP272 Analysis and Comparison to Test of AlMg3 Seals Near a SRF Cavity 1331
 
  • T. Schultheiss, C.M. Astefanous, M.D. Cole, D. Holmes, J. Rathke
    AES, Medford, NY, USA
  • I. Ben-Zvi, D. Kayran, G.T. McIntyre, B. Sheehy, R. Than
    BNL, Upton, Long Island, New York, USA
  • A. Burrill
    JLAB, Newport News, Virginia, USA
 
  The Energy Recovery Linac (ERL) presently under construction at Brookhaven National Laboratory is being developed as research and development towards eRHIC, an Electron-Heavy Ion Collider. The experimental 5-cell 703.75 MHz (ECX) cavity was recently evaluated at continuous field levels greater than 10 MV/m. These tests indicated stored energy limits of the cavity on the order of 75 joules. During design of the cavity the cold flange on one side was moved closer to the cavity to allow the cavity to fit into the available chemical processing chamber at Jefferson Laboratory. RF and thermal analysis of the AlMg3 seal region of the closer side indicate this to be the prime candidate limiting the fields. This work presents the analysis results and compares these results to test data.