Author: Anerella, M.
Paper Title Page
TUP149 Magnetic Field Mapping and Integral Transfer Function Matching of the Prototype Dipoles for the NSLS-II at BNL 1112
 
  • P. He, M. Anerella, G. Ganetis, R.C. Gupta, A.K. Jain, P.N. Joshi, J. Skaritka, C.J. Spataro, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  The National Synchrotron Light Source-II (NSLS-II) storage ring at Brookhaven National Laboratory (BNL) will be equipped with 54 dipole magnets having a gap of 35 mm, and 6 dipoles having a gap of 90 mm. The large aperture magnets are necessary to allow the extraction of long-wavelength light from the dipole magnet to serve a growing number of users of low energy radiation. The dipoles must not only have good field homogeneity (0.015% over a 40 mm x 20 mm region), but the integral transfer functions and integral end harmonics of the two types of magnets must also be matched. The 35 mm aperture dipole has a novel design where the yoke ends are extended up to the outside dimension of the coil using magnetic steel nose pieces. A Hall probe mapping system has been built with three Group 3 Hall probes mounted on a 2-D translation stage. The probes are arranged with one probe in the midplane of the magnet and the others vertically offset by ±10 mm. The field is mapped along a nominal 25 m radius beam trajectory. The results of measurements in the as-received magnets, and with modifications made to the nose pieces will be presented.  
 
TUP162 Engineering Design of HTS Quadrupole for FRIB 1124
 
  • J.P. Cozzolino, M. Anerella, A.K. Ghosh, R.C. Gupta, W. Sampson, Y. Shiroyanagi, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • A. Zeller
    FRIB, East Lansing, Michigan, USA
 
  Funding: Supported by the U.S. Department of Energy under Contract DE-AC02-98CH10886 and under Cooperative Agreement DE-SC0000661 from DOE-SC that provides financial assistance to MSU for FRIB.
The coils of the first quadrupole in the fragment separator region of the Facility for Rare Isotope Beams (FRIB) must withstand an intense level of radiation and accommodate a very high heat load. Magnets produced with High Temperature Superconductors (HTS) are especially suitable in such an environment. The proposed design employs second generation (2G) HTS, permitting operation at ~50K. The engineering considerations this design are summarized. The goal has been to engineer a compact, readily producible magnet with a warm bore and yoke, made from radiation-resistant materials, capable of operating within the heat load limit, whose four double-layered coils will be adequately restrained under high radial Lorentz forces. Results of ANSYS finite element thermal and structural analyses of the coil clamping system are presented. Coil winding, lead routing and splicing, magnet assembly as well as remote tunnel installation/removal considerations are factored into this design and will also be discussed.
 
 
TUP163 Design Construction and Test Results of a HTS Solenoid for Energy Recovery Linac 1127
 
  • R.C. Gupta, M. Anerella, I. Ben-Zvi, G. Ganetis, D. Kayran, G.T. McIntyre, J.F. Muratore, S.R. Plate, W. Sampson
    BNL, Upton, Long Island, New York, USA
  • M.D. Cole, D. Holmes
    AES, Medford, NY, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
An innovative feature of the proposed Energy Recovery Linac (ERL) at Brookhaven National Laboratory (BNL) is the use of a solenoid made with High Temperature Superconductor (HTS) with the Superconducting RF cavity. The use of HTS in the solenoid offers many advantages. The solenoid is located in the transition region (4 K to room temperature) where the temperature is too high for a conventional low temperature superconductor and the heat load on the cryogenic system too high for copper coils. Proximity to the cavity provides early focusing and thus a reduction in the emittance of the electron beam. In addition, taking full advantage of the high critical temperature of HTS, the solenoid has been designed to reach the required field at ~77 K, which can be obtained with liquid nitrogen. This significantly reduces the cost of testing and allows a variety of critical pre‐tests (e.g. measurements of the axial and fringe fields) which would have been very expensive at 4 K in liquid helium because of the additional requirements for a cryostat and associated facilities. This paper will present the design, construction, test results and current status of this HTS solenoid.
 
 
TUP164 Magnetic Design of e-lens Solenoid and Corrector System for RHIC 1130
 
  • R.C. Gupta, M. Anerella, W. Fischer, G. Ganetis, A.K. Ghosh, X. Gu, A.K. Jain, P. Kovach, A. Marone, A.I. Pikin, S.R. Plate, P. Wanderer
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
As a part of the proposed electron lens system for RHIC, two 6 T, 200 mm aperture, 2.5 meter long superconducting solenoids are being designed and built at BNL. Because of several demanding requirements this has become a unique and technologically advanced magnet. For example, the field lines on axis must be straight over the length of the solenoid within ±50 microns. Since this is beyond the normal construction techniques, a correction package becomes an integral part of the design for which a new design has been developed. In addition, a minimum of 0.3 T field is required along the electron beam trajectory in the space between magnets. To achieve this fringe field superconducting solenoidal coils have been added at the two ends of the main solenoid. The main solenoid itself is a challenging magnet because of the high Lorentz forces and stored energy associated with the large aperture and high fields. An innovative structure has been developed to deal with the large axial forces at the ends. This paper will summarize the magnetic design and optimization of the entire package consisting of the main solenoid, the fringe field solenoids, and the corrector system.
 
 
TUP165 Design, Construction and Test of Cryogen-Free HTS Coil Structure 1133
 
  • H.M. Hocker, M. Anerella, R.C. Gupta, S.R. Plate, W. Sampson, J. Schmalzle, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the U.S. Dept. of Energy under Contract No. DE-AC02-98CH10886 & under Coop. Agreement DE-SC0000661 from DOE-SC that provides financial assistance to MSU to design and establish FRIB
This paper will describe design, construction and test results of a cryo-mechanical structure to study coils made with the second generation High Temperature Superconductor (HTS) for the Facility for Rare Isotope Beams (FRIB). A magnet comprised of HTS coils mounted in a vacuum vessel and conduction-cooled with Gifford-McMahon cycle cryocoolers is used to develop and refine design and construction techniques. The study of these techniques and their effect on operations provides a better understanding of the use of cryogen free magnets in future accelerator projects. A cryogen-free, superconducting HTS magnet possesses certain operational advantages over cryogenically cooled, low temperature superconducting magnets.
 
 
TUP169 The Effect of Axial Stress on YBCO Coils 1139
 
  • W. Sampson, M. Anerella, J.P. Cozzolino, R.C. Gupta, Y. Shiroyanagi
    BNL, Upton, Long Island, New York, USA
  • E. Evangelou
    The Bronx High School of Science, Bronx, New York, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
A spiral wound “pancake” coil made from YBCO coated conductor has been stressed to a pressure of 100MPa in the axial direction at 77K. In this case axial refers to the coil so that the force is applied to the edge of the conductor. The effect on the critical current was small and completely reversible. Repeatedly cycling the pressure had no measureable permanent effect on the coil. The small current change observed exhibited a slight hysteretic behaviour during the loading cycle.
 
 
TUP170 Mechanical Design of an Alternate Structure for LARP Nb3Sn Quadrupole Magnets for LHC 1142
 
  • J. Schmalzle, M. Anerella, J.P. Cozzolino, P. Kovach, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • G. Ambrosio, M.J. Lamm
    Fermilab, Batavia, USA
  • S. Caspi, H. Felice, P. Ferracin, G.L. Sabbi
    LBNL, Berkeley, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
An alternate structure for the 120mm Nb3Sn quadrupole magnet is presently under development for use in the upgrade for LHC at CERN. The design aims to build on existing technology developed in LARP with the LQ and HQ magnets and to further optimize the features required for operation in the accelerator. The structure includes features for maintaining mechanical alignment of the coils to achieve the required field quality. It also includes a helium containment vessel and provisions for cooling with 1.9k helium. The development effort includes the assembly of a six inch model to verify required coil load is achieved. Status of the R&D effort and an update on the magnet design, including its incorporation into the design of a complete one meter long cold mass is presented.
 
 
TUP177 Open Midplane Dipoles for a Muon Collider 1160
 
  • R.J. Weggel, J. Kolonko, R.M. Scanlan
    Particle Beam Lasers, Inc., Northridge, California, USA
  • M. Anerella, R.C. Gupta, H.G. Kirk, R. B. Palmer, J. Schmalzle
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline, X.P. Ding
    UCLA, Los Angeles, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886 and SBIR contract DOE Grant Numbers DE-FG02-07ER84855 and DE-FG02-08ER85037.
For a muon collider with copious decay particles in the plane of the storage ring, open-midplane dipoles (OMD) may be preferable to tungsten-shielded cosine-theta dipoles of large aperture. The OMD should have its midplane completely free of material, so as to dodge the radiation from decaying muons. Analysis funded by a Phase I SBIR suggests that a field of 10-20 T should be feasible, with homogeneity of 1x10-4 and energy deposition low enough for conduction cooling to 4.2 K helium. If funded, a Phase II SBIR would refine the analysis and build and test a proof-of-principle magnet.
 
 
WEOCS3
HTS Magnets for Accelerator and Other Applications  
 
  • R.C. Gupta, M. Anerella, G. Ganetis, P.N. Joshi, H.G. Kirk, R. B. Palmer, S.R. Plate, W. Sampson, Y. Shiroyanagi, P. Wanderer
    BNL, Upton, Long Island, New York, USA
  • D.B. Cline
    UCLA, Los Angeles, California, USA
  • J. Kolonko, R.M. Scanlan, R.J. Weggel
    Particle Beam Lasers, Inc., Northridge, California, USA
 
  Funding: This work is supported by the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.
High Temperature Superconductors (HTS) are now becoming a crucial part of future medium and high field magnet applications in several areas including accelerators, energy storage, medical and user facilities. A second generation HTS quadrupole is being constructed for the Facilities for Rare Isotope Beams (FRIB). The muon collider requires high field solenoids in the range of 40-50 T - an R&D that is partly supported by SBIRs and partly programs at various laboratories. Superconducting Magnetic Energy Storage (SMES) R&D, recently funded by ARPA-E, requires large aperture HTS solenoid in the range of 25-30 T. A user facility at National High Magnetic Field Laboratory (NHMFL) has been funded to develop a 32 T solenoid. All of these programs require HTS in a quantity never obtained before for magnet applications and would play a key role in developing HTS for magnet applications. High field magnets pose special challenges in terms of quench protection, large stored energy and large stresses, etc. This presentation will review various ongoing activities, and examine the future prospects of HTS magnets in a number of applications, with a particular emphasis on high field applications.
 
slides icon Slides WEOCS3 [2.761 MB]  
 
THP055 Status of the RHIC Head-on Beam-beam Compensation Project 2223
 
  • W. Fischer, M. Anerella, E.N. Beebe, D. Bruno, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, A.K. Jain, R.F. Lambiase, C. Liu, Y. Luo, M. Mapes, T.A. Miller, C. Montag, B. Oerter, M. Okamura, A.I. Pikin, D. Raparia, Y. Tan, R. Than, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron lenses are under construction for RHIC to partially compensate the head-on beam-beam effect in order to increase both the peak and average luminosity. The final design of the overall system is reported as well as the status of the component design, acquisition, and manufacturing.
 
 
THP100 Structure and Design of the Electron Lens for RHIC 2309
 
  • A.I. Pikin, J.G. Alessi, M. Anerella, E.N. Beebe, W. Fischer, D.M. Gassner, X. Gu, R.C. Gupta, J. Hock, R.F. Lambiase, Y. Luo, C. Montag, M. Okamura, Y. Tan, P. Thieberger, J.E. Tuozzolo, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two electron lenses for a head-on beam-beam compensation are being planned for RHIC; one for each circulating proton beam. The transverse profile of the electron beam will be Gaussian up to a maximum radius of re=3σ. Simulations and design of the electron gun with Gaussian radial emission current density profile and of the electron collector are presented. Ions of the residual gas generated in the interaction region by electron and proton beams will be removed by an axial gradient of the electric field towards the electron collector. A method of optical observation the transverse profile of the electron beam is described.