Author: Andonian, G.
Paper Title Page
MOP011 Standing Wakefield Accelerator Based on Periodic Dielectric Structures 124
 
  • X. Wei, G. Andonian, J.B. Rosenzweig, D. Stratakis
    UCLA, Los Angeles, California, USA
 
  In recent years dielectric wakefield accelerators (DWA) have attracted significant attention for applications in high energy physics and THz radiation sources. However, one needs sufficiently short driving bunches in order to take advantage of the DWA's scaling characteristics to achieve high gradient and high frequency accelerating fields. Since a single large charge Q driving bunch is difficult to be compressed to the needed rms bunch length, a driving bunch train with smaller Q and small emittance, should be used instead for the DWA. In view of this senario, the group velocity of the excited wakefields needs to be decreased to nearly zero, so the electromagnetic energy does not vacate the structure during the bunch train. In this paper we propose a standing wakefield accelerator based on periodic dielectric structures, and address the difference between the proposed structure and the conventional DWA.  
 
MOP057 A SLAB Dielectric Structure as a Source of Wakefield Acceleration and THz Cherenkov Radiation Generation 211
 
  • D. Stratakis, G. Andonian, J.B. Rosenzweig, X. Wei
    UCLA, Los Angeles, USA
 
  Funding: Work is funded by US Dept. of Energy grant numbers DE-FG03-92ER40693.
Acceleration of electrons in wakefields set up by a series of drive bunches in a dielectric structure has been proposed as a possible component of next-generation accelerators. Here, we discuss future experimental work with a slab sub-millimeter dielectric loaded accelerator structure that in contrast to conventional dielectric tubes should diminish the effects of transverse wakes and will permit higher total charge to be accelerated. The proposed experiment will allow the generation of unprecedented peak power at THz frequencies. In addition, it can generate ~50-150 MV/m drive fields and thus will allow the testing of acceleration using witness and drive beams. We examine details of the geometry and composition of the structures to be used in the experiment.