Author: Aleksandrov, A.V.
Paper Title Page
MOP237 Large Dynamic Range Beam Profile Measurements at SNS: Challenges and Achievements 557
 
  • A.V. Aleksandrov, W. Blokland, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.
Beam profile diagnostics with large dynamic range is an important tool for understanding origin and evolution of the beam halo in accelerators. Typical dynamic range for conventional wire scanners has been in the range of 100. In high power machines like SNS fractional losses of 1 to 100 part per million is of concern and, therefore, higher dynamic range of profile measurements is desirable. Our near term goal was set to achieve a dynamic range of at least 10000 for all profile measurements in the SNS linac and transport lines. We will discuss present status of this program, challenges, and solutions.
 
 
WEOCN1 Laser Based Diagnostics for Measuring H- Beam Parameters 1433
 
  • Y. Liu, A.V. Aleksandrov, W. Blokland, C. Deibele, C.D. Long, A.A. Menshov, J. Pogge, A. Webster, A.P. Zhukov
    ORNL, Oak Ridge, Tennessee, USA
  • R.A. Hardin
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: sponsored by the Division of Materials Science, U.S. Department of Energy, under contract number DE-AC05-96OR22464 with UT-Battelle Corporation for Oak Ridge National Laboratory
In recent years, a number of laser based H- beam diagnostics systems have been developed in the Spallation Neutron Source (SNS). This talk reviews three types of laser based diagnostics at SNS: the laser wire profile monitors at superconducting linac (SCL), the laser transverse emittance scanner at high energy beam transport (HEBT), and the laser bunch shape monitor at medium energy beam transport (MEBT). Measurement performance will be reported and major technical challenges in the design, implementation, and operation of laser based diagnostics at accelerator facilities will be addressed.
 
slides icon Slides WEOCN1 [4.710 MB]  
 
WEP295 Status of Laser Stripping at the SNS 2035
 
  • T.V. Gorlov, A.V. Aleksandrov, V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • Y. Liu
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This work was supported by SNS through UT-Battelle, LLC, under Contract No. DE-AC05-00OR22725 for the U.S. Department of Energy.
This paper presents an overview of experimental and theoretical studies on laser stripping that have been conducted up to the present time in the SNS project. The goal of this work is to develop techniques to achieve the experimental preconditions necessary for the successful realization of a future intermediate experiment on laser stripping. The experimental work consists of the tuning and measurement of H־ beam parameters in readiness for the intermediate experiment, and also takes into account the features and possibilities of the SNS accelerator.