

Measurement of eCloud Development in the Fermilab MI using Microwave Transmission

Nathan Eddy, Jim Crisp, Ioanis Kourbanis, Kiyomi Seiya, Bob Zwaska, *FNAL* Stefano De Santis, *LBNL*

Fermilab Main Injector

Microwave Transmission

From plasma physics, expect a microwave travelling down a waveguide to experience a phase shift due to a homogeneous plasma From the microwave dispersion relation

$$k^{2} = \frac{\omega^{2} - \omega_{c}^{2} - \omega_{p}^{2}}{c^{2}} \longrightarrow \frac{\Delta \phi}{l} = \frac{\omega_{p}^{2}}{2c\sqrt{\omega^{2} - \omega_{c}^{2}}}$$

For an electron cloud $\omega_p^2 = 4\pi\rho_e r_e c^2$ is proportional to *e* density

Measurement Setup

- Made three different measurements of the phase shift
 - Measure sideband spectrum of 1.5GHz carrier with SA, for Phase Modulation

$$e(t) \approx A \left[\cos \omega_c t + \frac{\beta}{2} \cos((\omega_c + \omega_m)t + \phi_m) - \frac{\beta}{2} \cos((\omega_c - \omega_m)t - \phi_m) \right]$$

- Where β is the phase modulation amplitude, sideband dbc = 20log(β /2)
- Measure 1st sideband over a full MI ramp (800ms) in zero span mode with SA
- Mix down to baseband and record IF with deep memory scope (10MHz BW)
- Pickup connections to optimize coupling to TE₁₁ mode
 - Measure -20db transmission for two pickups and 15m of beam pipe
 - Cutoff for beam pipe is just below 1.5GHz

- Necessary to access MI Tunnel to reconfigure bpms
 - Bpms no longer available for operation
 - Can be months between MI access opportunities
 - Severely limits which bpms are available
- At MI60 Bend Region able to use spare Heliax cable
- At MI40 Straight Region have to use RG8 bpm cable
 - See an addition 20db of attenuation on transmitted signal
 - Appear to get coupling between the cables
 - Put the 40db drive amplifier in the tunnel at this location

Sideband Spectrum

Nathan Eddy

Zero Span Sideband

MI60 Bend

Zero Span Sideband

MI40 Straight

Nathan Eddy

PACO2 Direct Phase Shift Technique

- Mix the transmitted microwave signal to baseband
 - Use the delay to effect 90° phase shift (zero DC offset)
 - Theoritically, should only see PM modulation as AM cancels
- Scope aquires from 2ms to 20ms sampling at either 500MS/s or 100MS/s respectively
 - Expect eCloud induced phase shift to be the same each turn
 - The beam harmonics behave as noise which averages away
 - Use 100 turn average at MI60 and 1700 turns at MI40
 - Size of the beam harmonics impacts the dynamic range

Direct Phase Shift Results

- To calculate the eCloud density is difficult
 - Non-homogeneous plasma, magnetic fields, possible reflections
 - Efforts underway to simulate the microwave transmission
 - See TH5PFP019 and FR5PFP089
- Right now, have very interesting measurements of microwave phase shifts under a variety of beam intensities
 - Strong evidence that these are eCloud induced
 - Use demodulation to uniquely identify PM and AM
- The end goal is to see good agreement between measurements and simulation for current MI intensities
 - Must rely upon simulation to predict what measures are needed to mitigate the eCloud for Project X
 - The direct phase shift in the time domain can be directly compared with the simulation of a single machine turn
 - See TH5PFP032
- During the upcoming summer shutdown, a dedicated system will be installed
 - 2 pickups in dipole bend, 3 pickups in ~2m straight where two 1m coated beam pipes are being installed along with absorbers
 - Facilitate ease of measurements
 - Implement dedicated digital receiver measure only PM, improve S/N