

Nonlinear Dynamics Study of Storage Ring with Super Periods

H. Hao^{1,2}, Y. K. Wu¹, X. Q. Wang²

¹Department of Physics, Duke University

²National Synchrotron Radiation Laboratory, University of Science and Technology of China

May, 2009

- Does higher super-periodicity of a storage ring help improving DA of a storage ring?
- DA scaling with sextupole strength
- DA scaling with $N_{\rm SP}$
- Examples
 - TBA: ALS
 - DBA: NSLS-II

Dynamic Aperture – Simple Analytic Approach

Dynamical system composed of sequence of linear and nonlinear elements:

$$egin{aligned} \mathcal{M}_{ ext{cell}} &= \mathcal{M}(q,p;s
ightarrow s+L) \ &= ext{e}^{-:H_1:} ext{e}^{-:H_2:} \cdots ext{e}^{-:H_n:} \ \mathcal{M}_{ ext{SR}} &= (\mathcal{M}_{ ext{cell}})^{N_{ ext{SP}}} \end{aligned}$$

In presence of sextupole:

$$egin{array}{rl} H&=& H_{
m L}+H_{
m NL}\ &=&
uJ+SJ^{3/2}f(\phi)\ &r=\left\langle rac{H_{
m NL}}{H_{
m L}}
ight
angle _{\phi}\sim J^{1/2}S \end{array}$$

• Assumption: at the DA boundary, r_{\max} does not relate with S

$$J_{
m max}~\propto~1/S^2$$

E. Forest mentioned DA scales with sextupole strength (2000)

DFELL, Duke University Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

DFELL, Duke University Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

DFELL, Duke University

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

- There exists a "barrier" at which particles get lost
- Fixed range of nonlinear tune shift

$$rac{{
m d}
u}{{
m d}J}~~{
m \propto}~~S^2$$
 and $|{
m \Delta}
u|$ fixed $ightarrow~~J_{
m max}~~{
m \propto}~~1/S^2$

DFELL, Duke University Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

 $N_{\rm SP}$ =12 tracking, 2 \vec{S}_0 , observe the motion every SP

 $N_{\rm SP}$ =12 tracking, 2 \vec{S}_0 , observe the motion every SP

Increase of decrease $N_{\rm SP}$ from 12 to other numbers

- Vary $N_{\rm SP}$ of the ring
- Keep phase advance of one SP
- Minimize the β function change

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

NSRL, USTC

Vary the ALS Lattice

Increase of decrease $N_{\rm SP}$ from 12 to other numbers

- Vary N_{SP} of the ring
- Keep phase advance of one SP
- Minimize the β function change

$N_{\rm SP}$ from 3 to 50+

 $N_{_{\rm SP}}$ =24 tracking, 1 SP observation, $\xi = 0$

 $N_{_{\rm SP}}$ =24 tracking, 1 SP observation, $\xi = 0$

- Modify the ALS lattice with arc part unchanged
- $\beta_{X,0} = 11 \text{m} \rightarrow 2.8 \text{m}$
- $\beta_{y,0} = 3m \rightarrow 2.8m$
- $v_{x} = 1.1875 \rightarrow 1.4103$
- $v_v = 0.6833 \rightarrow 0.8714$
- $N_{\rm SP}$ from 4 to 50+

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

Modified ALS Lattice

• New ALS lattice, arc part unchanged, $N_{\rm SP}$ from 4 to 50

$$\alpha_x = 0.12$$

 $\alpha_y = 0.043$

12 SPs, 0 chromaticity result:

$$\alpha_x = 0.12$$

 $\alpha_y = 0.045$

For ALS, the nonlinear beam dynamic is mainly determined by the design in arc part

DBA Example - NSLS-II

- DBA
- 3 GeV
- 52.8 m/SP
- *N*_{SP} = 15
- 2.02 nmrad
- 2 families of chromatic sextupoles (*sm1, sm2*)
- 8 families of harmonic sextupoles
- $N_{\rm SP}$ from 4 to 50+

Courtesy of NSLS-II Staff, BNL

DFELL, Duke University

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

DBA Example - NSLS-II

- DBA
- 3 GeV
- 52.8 m/SP
- *N*_{SP} = 15
- 2.02 nmrad
- 2 families of chromatic sextupoles (*sm1, sm2*)
- 8 families of harmonic sextupoles
- $N_{\rm SP}$ from 4 to 50+

Courtesy of NSLS-II Staff, BNL

DFELL, Duke University Hao Hao, PAC

DBA Example - NSLS-II

Modified sextupoles setting: harmonic sextupoles multiply factor of 0.8

- Single cell of the N-cell storage ring \rightarrow DA of the storage ring
- DA scaling with sextupole strengths:

$$\begin{array}{lll} \text{define} & \vec{\sigma} = (\sigma_1, \sigma_2, \cdots, \sigma_n) & |\vec{\sigma}| = 1 \\ \text{let} & \vec{S} &= \lambda \vec{\sigma} \\ \text{we have} \\ & \text{DA} &= \frac{\alpha(\vec{\sigma})}{\lambda^2} \\ & \text{DA}_{\text{frequency domain}} &= g(\vec{\sigma}/|\vec{\sigma}|) \end{array}$$

- N_{SP} could be changed without too much change in nonlinear dynamics
- For ALS, arc part \rightarrow nonlinear dynamics
- More work:

DFELL, Duke University

– How about the relation with δ

$$- rac{\partial(\mathrm{DA})}{\partialec{\sigma}} = ?$$

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

Thanks!

DFELL, Duke University Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

ALS – Off-momentum Case

- Different $N_{_{\rm SP}}$ $\xi=0$
- Different energy deviation from -15% to 15%

- For different energy deviation, slopes are different
- Different slope relates with the $f(\delta)$

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009 **DFELL, Duke University**

Hao Hao, PAC 2009, Vancouver, Canada, May, 2009

NSLS-II, change sextupole strength x,y versus tune