Development of CW Laser Wire in Storage Ring and Pulsed Laser Wire

• CW Build-up cavity scheme

- principle of optical cavity
- setup and measurement
- multi-bunch measurement
- higher-order mode upgrade
- pulsed laser build-up system
- self-start recirculation system
- High power pulsed laser scheme
 - setup and lens system
 - measurement example

Yosuke Honda 2009.5.6 PAC09 Vancouver

Acknowledgment A.Aryshev and S.Boogert to provide pulsed laser wire slides

Principle of Laser Wire Monitor

- Principle of beam size measurement
 - Input a focused laser beam transversely across the electron beam.
 - Measure flux of Compton scattering signal as a function of laser position.
- Advantage of laser based monitors
 - not damaged by high intensity beam
 - non-invasive measurement
 - possible to design a thinner wire than conventional wire scanner

Technical challenges

- To obtain enough signal
 - high laser power (100W for storage ring, 100MW for single path)

 $\sigma_e = \sqrt{\sigma_{meas}^2 - \sigma_{lm}^2}$

- To realize high spatial resolution
 - thin laser width (<~5 μ m)
 - stable and well known laser width for subtracting its contribution
- Two possible solutions
 - build-up cavity scheme (compact and suitable for storage ring)
 - high power pulsed laser (single path, low repetition rate beam line)

Accelerator Test Facility in KEK

- ATF is a test accelerator to produce a low emittance beam required for LC.
- Damping ring LW (Kyoto university)
 - Build-up cavity type LW measures equilibrium condition of the ring.
- Extraction line LW (Royal Holloway university and Oxford university)
 - High power pulsed LW development aiming to demonstrate ~micron resolution.
- Electron beam to be measured: <10um (vertical), 100um (horizontal)

Build-up Cavity scheme

Principle of optical cavity (power enhancement)

- closed optical path which consists of mirrors facing each other
- laser power builds-up inside the cavity
- much higher power than commercial laser Reflection source is available.
- Realization of power enhancement
 - resonance condition (standing wave)
 - higher enhancement factor (high reflectance mirrors) results in narrower resonance width. cavity length

Principle of optical cavity (mode profile)

- Boundary condition introduced by the cavity mirrors defines the structure of the laser beam allowed inside the cavity.
 - Once the cavity structure is rigidly assembled, laser wire size should be stable.
- Waist size (w0) is controlled by the curvature of the mirrors and the cavity length.

cavity length (L)

• Small w0 is realized at very close to the unstable limit.

Setup of the laser system

- laser source: NPRO (lightwave model 142)
 - wavelength 532nm, power 300mW
- cavity:
 - length 40mm, mirror-p 20mm
 - Finesse 600 (effective power 100W)
 - w0 12 μ m (σ = 6 μ m (w0/2))
 - piezo control speed ~kHz

cavity assembly

vacuum chamber

shield pipe

Layout of the system

- Laser system
 - two cavity chambers (vertical and horizontal)
 - laser path is switched for each measurement
- Scanning
 - by moving the whole table (1 μ m resolution)
- Detector
 - Csl scintillator at 13m downstream
 - collimators to reduce beam background
 - Compton signal: 28MeV(max)

Measurement scheme

low

high

- Counting method ٠
 - typical signal rate (~kHz), whereas ring cavity transmission revolution is 2MHz. Each signal is single photon.
 - Realize fast laser on/off switching by modulating cavity resonance veto for laser off scaler

Measurement example

E 2.0

-56 -58 -60

-62) -64) -66) -68)

<u>م</u>

re-fill

re-fill

re-fill

re-fill

re-fill

re-fill

- Typical measurement
 - 10μ m step, 10sec/position
 - back and force measurement
 - 6min. to complete a measuement
- Contribution of laser size subtraction
 - σ (laser) estimation

Measurement example

- Multi-bunch mode
 - possible to measure signals from each bunch in a multi-bunch train (2.8nsec spacing) by timing identification
 - intra-train beam size variation measurement
- Observation of emittance damping after injection
 - timing identification after injection

Higher-order mode for higher resolution

- Smaller w0 is not straight forward (diffraction limit)
- Other cavity resonances that have smaller spatial structure
 - TEM01 (vertical dipole mode)
 - resonance condition is shifted from TEM00
 - TEM10 contaminates TEM01
- Scanning by the dipole mode laser, central dip of the measured shape responses beam size smaller than laser rms size $E_{i}(x,y,z) = A_{i}^{w_{0}}(x,y,z)$

Efficient excitation of higher-order mode

TEM01

С

Chi 200mV

- Two ideas to control TEM01 mode
 - mode split between TEM01 and TEM10 by slight bending mirrors
 - mode converter to modify original TEM00 laser to TEM01 like phase structure

M 100µs Lxt \ 84mV

Beam measurement demonstration

-520

position [µm]

-500

- This test was done with larger w0 setup to match usual ATF beam size.
- both laser size, e-beam size are free parameters.

100

50

0

Setup of pulsed cavity

- cavity length=21cm (714MHz), two folded 357MHz cavity
- finesse 500, w0 250 μ m
- wavelength 1064nm, pulse dulation 7.3ps, 500mW passive mode-lock laser
- installed in ATF at the same location of cw laser wire

Measurement system

- Demonstrated stable collision with beam. (7.3ps laser and 30ps beam in 90deg. crossing)
- Bunch length of the beam can be • obtained from the timing scan data

rate

count

200

1600

1400

1200

1000

800

600

400

200

0

-600

Position (Y) scan

unlocked

-200

0

position [µm]

-400

timing

locked

Self-start recirculation system

laser medium

- There can be many applications with a high finesse build-up cavity.
- Higher finesse in external cavity is difficult to control
 - ~1000 can be controlled with mechanical feedback
 - >10000 may need new ideas
- Oscillator scheme
 - simple oscillator with a laser medium inside the cavity is not suitable for high power.
 - recirculation scheme with external laser amplifier can realize high finesse and self-start

Self-start recirculation system (demonstration)

- Self-start oscillation
 - amplifier gain > round trip loss
 - high gain fiber laser amplifier
- Bench test demonstration
 - finesse 30000 cavity
 - realize resonance with no active control

High power pulsed laser scheme

Pulse Laser Wire (laser)

- In single path beam line of low repetition rate. Higher laser power is needed.
- With a high power pulsed laser system, enough laser power to have >1000 Compton scattering in single collision.
- Since there is no laser mode control mechanism like optical cavity, careful A laser profile measurement system is needed before the interaction

Interaction chamber design

- Aiming to demonstrate small spot size ~µm
- In order to focus as small as possible, smaller F# is required.
 - place the final lens close to the chamber
 - large aperture

Focusing lens design

≧

Focus beam W [µm]

24

- The beam size at the focus is controlled by the input beam size.
- The minimum achievable spot size is 2.2 um with a ideal input laser. It is balance of diffraction limit and aberration effects.
- Need to care the damage of windows due to ghost reflection of high power laser

Input beam W [mm]

Measurement example

- σ (meas) = 3.65 um
- σ (beam) is calculated to be 2.91 um assuming σ (laser) = 2.2 um.
- Quality of the laser beam has to be improved.

Summary

• Two types of laser wire monitors have been developed at ATF

- Build-up cavity scheme (at damping ring)
 - 6μ m rms size, 100W effective power
 - multi-bunch measurement demonstration
 - resolution upgrade with higher-order mode
 - variations: pulsed cavity, self-start system
- High power pulsed laser scheme (at extraction line)
 - lens system to realize $2.2\,\mu$ m spot size
 - $3.65\,\mu$ m measured size was demonstrated