Status of Cryogenic Permanent Magnet Undulator Development

T. Tanaka, T. Hara, T. Bizen, T. Seike and H. Kitamura SPring-8 Insertion Device Group

CONTENTS

- What is Cryogenic Permanent Magnet Undulator (CPMU)?
- History of Development
- Cold Magnetic Measurement
- Key Issues toward Realization

CONTENTS

- What is Cryogenic Permanent Magnet Undulator (CPMU)?
- History of Development
- Cold Magnetic Measurement
- Key Issues toward Realization

PM Material for Undulators

What is CPMU?: Concept

- PMs for Undulators Should Have:
 - -high remanence: magnetic field
 - –high coercivity: resistance against demagnetization However, Br x iHc ~ constant: low Br and high iHc
- Temperature Coefficient of PM Material _remanence: -0.1%/K@300K

 - -coercivity: -0.6%/K@300K

PMs at Cryogenic Temperature for Better Magnetic Performance

Cryogenic Permanent Magnet Undulator

T. Hara T. Tanaka H. Kitamura T. Bizen T. Seike T. Kohda

& Y. Matsuura Phys. Rev. ST-AB, 7 (2004) 050702.

Temperature Dependence of PMs

Performance of CPMU

CONTENTS

- What is Cryogenic Permanent Magnet Undulator (CPMU)?
- History of Development
- Cold Magnetic Measurement
- Key Issues toward Realization

CPMU Prototype@SP-8 (2005)

Cryoundulator Prototype PM Material: NEOMAX50BH λ_u =15mm,L=0.6m

Temperature Control GM-cycle Cryocooler & Sheath Heater

Development History

courtesy of T. Tanabe (BNL)

Cryo-ready IVU (2006)

- X25-MGU IVU λ_u =18mm, Minimum Gap=5.6mm, 1m Long
- integrally machined cooling passageways in arrays
- Low-temperature "friction stir welding" technique was used for the first time for Al alloys in a UHV accelerator device
- Cold test was conducted with boiled off LN gas

Development of measuring systems A Light for Science

Stretched Wire •Field integral measurements •Gap measurements

Laser Scale .---

ESRE

Undulator

Vacuum insulated liquid nitrogen outlets

ESRF

Hal

Inr

European Synchrotron Radiation Facility

The device is now under routine operation at CT and characterization is being carried out.

CPMU for ESRF (2008) L=2m, λ_u=18mm courtesy of J. Chavanne (ESRF)

Installed CPMU

A Light for Science

See

" First operational experience with a Cryogenic Permanent Magnet undulator at ESRF"

J. Chavanne, G. Lebec, C.Penel, F.Revol, ESRF, Grenoble France C. Kitegi, SOLEIL, Gif sur Yvette France.

PAC09

CPMU installed in ID6 straight section (January 2008)

CPMU for SLS (2009)

- Under construction in collaboration between PSI and SPring-8.
- To be replaced with the wiggler installed in an existing beamline to increase the brilliance up to 30 keV.
- Field measurement & correction at RT has been finished (phase error < 2°).
- Cooling test will be carried out in June followed by field measurement at CT.

CPMU at Diamond Light Source

- The CPMU will be used for beam line 107
- Period: 17.7mm, K= 1.7 at 5mm, L = 2 m
- Working temperature 120K 150K
- Ordered from Danfysik
- FDR completed
- Delivery October 2009

courtesy of J. Schouten (DIAMOND)

CONTENTS

- What is Cryogenic Permanent Magnet Undulator (CPMU)?
- History of Development
- Cold Magnetic Measurement
- Key Issues toward Realization

Cold Magnetic Measurement

- Magnetic measurement of PM array at a cryogenic temperature, in order to check
 - field enhancement (optimum temperature)
 - variation of the undulator performance
- Requirements on measurement
 - actuation of a Hall probe in vacuum
 - positional fluctuation due to pitching, rolling and yawing of the actuator should be low enough
- Possible Solution
 - install a rigid linear guide with high mechanical precision in vacuum

— measure the Hall-probe position and feedback

Meas. System for CPMU Prototype

Top View

o-ring seal

5

laser diode

axis stage

CO CO

beam splitter

Tra

FIFTH THE PARTY OF

Peak Field vs. Temperature

Variation of Und. Performance

The difference between RT and CT is negligibly small! Field correction at RT is still effective.

CONTENTS

- What is Cryogenic Permanent Magnet Undulator (CPMU)?
- History of Development
- Cold Magnetic Measurement
- Key Issues toward Realization

Resistance against Radiation Damage

Demagnetization by "Memory Effect"

- Memory Effect
 - -PMs irradiated at CT can be demagnetized due to accumulated radiation damage once heated up to RT.

Temperature Gradient (1)

 Cooling to CT may bring nonnegligible temperature gradient over the magnet array.

 B_r is much less sensitive to T at the operation point.

Temperature gradient may not be a problem.

Another Concern: Deformation of the Inner Beam.

Temperature Gradient (2)

• Temperature gradient may cause discrepancy in the distance between supporting shafts.

Correction with Differential Adjuster

- If the length of supporting shaft is adjustable, then the distortion can be corrected.
- "Differential Adjuster" as the outer shaft has been developed and tested at SPring-8. The function is similar to a turnbuckle.

L can be adjusted by 0.2mm/rev.

Example of Correction

Result of phase error correction (at RT) by means of the differential-adjuster shaft.

Others Topics

- Cooling System
 - Three different methods have been tried:
 - > Cryocooler (prototype@SP-8)
 - Gas Coolant (cryo-ready@NSLS)
 - LN Circulation (ESRF, PSI)
- Gap Monitoring
 - -Gap variation due to thermal shrink of the supporting shafts
 - Optical Micrometer (KEYENCE LS-7000)
- Vacuum Test without Baking
 - Vacuum of SCSS IVU (1/2 pumping speed & no baking) operated at RT < 10⁻⁷Pa
 - What is the achievable vacuum at CT?
- New PrFeB* as an alternative to NdFeB
 - -Br=1.64T@77K
 - * T. Tanabe, private communication

Summary

- CPMU concept
 - -Simple modification of IVU
 - Enhancement of magnetic properties of PMs by cooling to CT (>100K)
- Several prototypes constructed, two devices are under construction
- A variety of R&D activities carried out toward realization, now ready to start construction of practical devices.

Thank you for attention!