

The development of a Superconducting Undulator for the ILC Positron Source

James Rochford On behalf of the HeLiCal collaboration

Introduction

- Helical Collaboration
- ILC requirements

Summary of helical development programme

- Design drivers
- Magnetic modelling
- Prototype research and development
- Manufactured specification

Prototype design and manufacture

- 4m Module design
- Magnet Testing and integration
- Assembly of 4m module
- Testing of the final prototype

Helical collaboration

- Argue physics case for polarised positrons
- Prototype undulator
 - permanent magnet
 - superconducting

Collaboration members ASTEC: J.A. Clarke, O.B. Malyshev, D.J. Scott, B. Todd, N Ryder RAL: E. Baynham, T. Bradshaw, J. Rochford, A Brummit, G Burton, C Dabinett,S. Carr, A Lintern University of Liverpool : I.R. Bailey, J.B. Dainton, P. Cooke, T. Greenshaw, L. Malysheva DESY : D.P. Barber University of Durham : G.A. Moortgat-Pick Argonne: Y. Ivansuhenkov

Helical

ASTEC

Permanent magnet undulator Impedance calculations Wakefield heating Vacuum considerations Specification (plus Liverpool and Durham)

RAL Technology dept Superconducting undulator Magnetic modelling Prototyping Mechanical design Manufacture

Undulator :

To produce a circularly polarised positron beam

•High energy electron beam through helical undulator

- emission of polarised photons.
- •Downstream high Z target, pair production

•Positrons stripped off to produce polarised positron beam.

Undulator period (mm)

Field requirements for •Electron Drive Beam Energy 150 GeV •Photon Energy (*1st harmonic*) 10.06 MeV •Photon Beam Power 131 kW

Initial goals •Total undulator length 100-200m •Undulator Period 10 mm ?? •Beam Stay clear 4.5mm dia •Module length 2-10m

R&D programme

Goals

- Shortest possible period -Goal 10mm
- Beam stay clear 4.5mm -Tolerance 250um
 - -Bore tube 0.5mm
 - -Winding bore ~6mm

Constraints

- Technology Selection NbTi over NbSn
 - -Tight tolerances
 - -Small bore
 - -Complex winding
 - -Relatively small improvement from NbSn

We needed a programme to assess what could be achieved

- Magnetic modelling what's achievable with NbTi
- Prototype research and development
- Manufactured specification

Magnetic modelling

Calculated operating point for 7 wire 9 layer Cu:Sc 1:1 NbTi ribbon Winding bore (mm) 5.25 5.60 6.10 6.30 6.42 period (mm)77 12.00 49 58 71 80 11.80 55 63 75 82 80 11.50 87 64 71 80 84 11.25 92 99 72 80 96 103 11.00 80 89 108 112

Relationship between period and winding bore in terms of operating point
If we want to operate at 80%
We constrain the operating space
For a winding bore of 6mm
We can reduce the period to 11.5mm

Plots showing realistic bore-period models

Magnetic modelling

The peak conductor field •No iron present •bore field 0.8T •Jrequired= 1000A/mm²

Inclusion of iron •If NbTi is used •Iron former and poles are essential

The peak conductor field •Full iron poles •Bore field=0.8T •Jrequired=400A/mm²

Typically •0.4 the field from the iron poles •0.1 from the iron return yoke

Magnetic modelling

What happens during a quench

Simple adiabatic quench model •Stored energy small only ~250j at nominal current

Low inductance , high current, rapid quench
By time current has run down ~15% coil normal

•High temp rise in hot spot can be 150-200K

•Employ Quench resistance ~0.5ohm

Real coil more complex

Simple adiabatic quench model pessimistic
Will have significant quench back in the copper bore tube
Effectively spreads quench energy very quickly quenching a much larger portion of the coil

Quench current	А	215	215	300	300
Protection resistance	ohm	0	0.5	0	0.5
Total energy dissipared internally	J	253	21	578	131
Total energy dissipated externally	J	0	232	0	444
Total energy in system	J	253	253	578	576
Maximum temp rise	к	126	54	161	109
Maximum internal voltage	V	86	7	222	47
Time constant of quench	mS	34	21	19	17
Normal part of the coil		17%	11%	18%	16%

Prototype R&D

R&D programme

- •Assess different manufacturing methods
- •Winding techniques
- Machining techniques
- •Promising techniques prototype undulators
- •Bench mark modelling results

Prototype R&D

Short prototypes

- •Family of prototypes
- •Each looking at different aspects of manufacture
- •Manufacturing concept evolved with the prototypes

Parameter	Prototype 1	Prototype 2	Prototype 3	Prototype 4	Prototype 5	Prototype 5'
Prototype goal	Winding Technique	Mechanical tolerances	Reduced period	Check effect of iron	Increased period	improved impregnation
Length	300 mm	300 mm	300 mm	300 mm	500 mm	500 mm
Former material	Aluminium	Aluminium	Aluminium	Iron	Iron	Iron
Bore tube	integral	integral	integral	integral	copper	copper
Winding period	14 mm	14 mm	12 mm	12 mm	11.5 mm	11.5 mm
Winding bore	6 mm	6 mm	6 mm	6 mm	6.35 mm	6.35 mm
Magnet bore	4 mm	4 mm	4 mm	4.5 mm	5.23 mm	5.23 mm
Superconducting wire	Cu:SC 1.35:1	Cu:SC 1.35:1	Cu:SC 1.35:1	Cu:SC 1.35:1	Cu:SC 0.9:1	Cu:SC 0.9:1
Winding	8-wire ribbon, 8 layers	9-wire ribbon, 8 layers	7-wire ribbon, 8 layers	7-wire ribbon, 8 layers	7-wire ribbon, 8 layers	7-wire ribbon, 8 layers 11

Prototype specification

Following a pretty extensive **R&D programme** and **modelling study** the following specification was developed :

Undulator Period	k	11.5 mm
Field on Axis		0.86 T
Peak field homo	geneity	<1%
Winding bore		6.35mm
Undulator Lengt	h	147 m
Nominal current		215A
Critical current		~270A
Manufacturing to	olerances	
	winding concentricity	+/-20um
	winding periodicity	+/-50um
	Axial straightness	+/-50um
NbTi wire Cu:Sc	ratio	0.9
Winding block		9 layers
		7 wire ribbon

This defines the shortest period undulator we could reliably build as a prototype with a realistic operating margin. The now the baseline for the ILC RDR

Prototype design

Prototype design

Cryogenic system

- •Magnets Bath cooled
- •Re condensing system
- •Utilising a thermo siphon
- •Sumitomo RDK4150
- •In principle zero boil off
- •Weak thermal link between
- bath and condenser
- •Ln2 pre cooling for He vessel
 - -expedites cooling.

•Final stage charge system with liquid

Heat load inventory

- •50watts 1st stage
- •1 watt 2nd stage
 - 1st stage 55K
 2nd stage 4.5K
 0.5W contingency

Prototype manufacture

Prototype manufacture

Following winding
Potting
connections to ribbon
Insertion in Yoke
Align and clamp in Ubeam

Prototype manufacture

Magnet straightness

- Prototype alignment
 - +/-200um in X
 - +/-170um in Y
- •not adequate to deliver a straightness of +/-50um
- •Developed an active alignment Yoke
- •Allows the straightness of the magnet to be aligned to better than 50um.
- •In principle the prototype can be retrofitted with this system at a later date.

Prototype manufacture

Active alignment system

- •Flexibility of the magnet
- •Over sized magnet aperture 100um clearance
- Periodically placed adjustors in X and Y
- •adjustors locked off, a small spring maintains alignment takes up the thermal contraction when cold
- •Small contact pads spread contact pressure and avoid damage to winding
- •All components are magnetic steel minimise losses Manufactured 1/2 meter long test section
- •Obtaining some metrology data with this at present
- •Our initial tests shows we can position the magnet axis to within +/- 10um at the actuator adjustment point

Hall probe

Prototype manufacture

Stepper motor

Current leads

Screw mechanism Field maps along the length of the undulator

•Mapping Br along the axis

•At 4 points around the azimuth; 0, 90, 180 & 270 degrees

•At magnet ends more detailed maps at 45^o intervals around the azimuth

Also carried out a Quench study

Prototype manufacture

- •Plots show different trajectories calculated from different profiles around azumith 0°,90°,180°, 270°
- Trajectories calculated using SPECTRA

Science & Technology Facilities Council

Rutherford Appleton Laboratory

- Trajectories pessimistic limited by hall probe resolution and offset
- These are worst case and easily corrected`

Prototype manufacture

Quench behavior of 4m module magnets

Magnet testingQuench testing of both Magnets

- •1st magnet went straight to field
- •2nd magnet repetitive training

 Reasons for this are not understood

Both magnets can deliver nominal field with a good margin!

Prototype manufacture

Alignment ~+/-200um

Mag 2 connection

Prototype manufacture

Final bore leak check following insertion •System cooled to 77K •No He leaks above 1e-12mb/ls •ILC operational pressure ~1e-7mb •With a small 20l/s ion pump near to each module •This system can reach pressures <1e-11mb

Prototype testing

Powering of magnets in prototype this April

Each magnet powered independently to ~100A
We are having problems
With the current leads
Bad thermal contact
Conductor tails are normal
In process of fixing this at the moment

Prototype testing

"Beam heating" test planned

Simulate beam heating effects

resistors in evacuated bore

 Assess how much beam heating magnets can sustain

Collimation in undulator half-cell.

Synchrotron load per module RDR (W)		
Peak	0.3	
Mean	0.1	
Wake field heating per module RDR (W)		
Fill pattern 1		
Peak	0.6	
mean	0.3	
Mean beam load	0.4	

Prototype testing

In coming weeks

Finish commissioning tests

- •Recool system
- •Run magnets up to nominal current
- Perform bore heating test
- •Run magnets up to critical current
- •Perform some thermal stability tests on cooler

A prototype helical undulator has been built for the ILC

•The system is capable of fulfilling the ILC positron source requirements

•The magnets have demonstrated that they can meet the field requirements

- •They are now integrated in the final module
- The system is now being commissioned

•Tests to see how much beam heating the module can sustain are underway