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Plans for future injectors: Motivation
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1. Improve reliability and reduce vulnerability of injector chain for LHC era:
Ageing accelerators (PS is 49 years old!) operating far beyond initial parameters

⇒ need for new accelerators designed for the needs of SLHC

2. Remove injector performance limitations:
Excessive incoherent space charge
tune spreads ΔQSC at injection in the
PSB (50 MeV) and PS (1.4 GeV) because
of the high required beam brightness N/ε*.

⇒ need to increase the injection energy in the synchrotrons
• Increase injection energy in the PSB from 50 to 160 MeV
• Design the PS2 (PS successor) with an acceptable space charge effect for the maximum 

beam envisaged for SLHC.
• Increase injection energy in the SPS from 25 to 50 GeV kinetic
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CERN injector complex upgrade - Overview

Linac4: H- Linac
(160 MeV)

(LP)SPL: (Low Power) Superconducting 
Proton Linac (4-5 GeV)

PS2: High Energy PS
(~ 5 to 50 GeV – 0.3 Hz)

SPS+: Superconducting SPS
(50 to1000 GeV)

SLHC: “Superluminosity” LHC
(up to 1035 cm-2s-1)

DLHC: “Double energy” LHC
(1 to ~14 TeV)
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Stage 1: Linac4 
- construction 2008 – 2014

Stage 2: PS2 and SPL:  preparation of 
Conceptual Design Reports for 
- project approval mid 2012
- start of construction begin 2013
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PS2 design goals

• For LHC operation
– Higher beam brightness within nominal transverse emittances
– Flexibility for generating various bunch spacings and bunch patterns
– Reduction of SPS injection plateau and LHC filling time 

• General design goals
– High reliability and availability
– Simplification of operation schemes for complete complex
– Low beam losses in operation for PS2 and complete complex
– Potential for future upgrades of the accelerator complex
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Performance requirements and parameters

• Starting point for the design is brightness (N/εn) for LHC beams
– Design goal: Twice higher brightness than “ultimate” 25ns beam            

with 20% intensity reserve for transfer losses
• 4.0×1011ppb = 2 × 1.7×1011 × 1.2 in transverse emittances of 3μm

• Injection energy
– Determined by the beam brightness of the LHC beam
– Limiting the incoherent space charge tune spread at injection to

below 0.2 requires
• 4 GeV injection energy

• Extraction energy
– Injection into SPS above transition energy to reduce space charge effects
– Higher energy gives smaller transverse emittances and beam sizes and 

therefore reduced losses
– Potential for long-term SPS replacement with higher energy

• ~50 GeV extraction energy
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PS2 machine size

• Constraints from desired extraction energy ~50 GeV
– Iron dominated dipoles aiming at B ≤ 1.7 T 

• PS2 will have roughly twice PS size i.e. R ~ 200 m and C ~ 1250 m.

• Constraints from filling SPS for physics
– Complete filling of SPS circumference is desired for high intensity physics
– Using a 5-turn multi-turn extraction scheme, similar to PS (2 x 5 turns):

• Ideal PS2 length is 1/5 SPS = 11/5 PS = 2.2 PS.

• Constraints from PS2-SPS synchronisation (rf cogging)
– N x hPS2 = K x hSPS is needed for correct synchronisation

• (N/K) = 77/15 is best choice (5 PS2  slightly shorter than the SPS.)
• h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180

• Optimum length for PS2 from above arguments
– PS2 = 15/77 SPS = 15/77 * 11 PS = 15/7 PS.

• 1346.4 m circumference, 214.3 m average radius
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PS2 main parameters

Parameter unit PS2 PS

Injection energy kinetic GeV  4.0 1.4
Extraction energy kinetic GeV 20 - 50 13 - 25
Circumference m 1346 628
Max.  bunch intensity LHC (25ns) ppb 4.0 x 1011 1.7 x 1011

Max.  pulse intensity LHC (25ns) ppp 6.7 x 1013 1.2 x 1013

Max. pulse intensity FT ppp 1.0 x 1014 3.3 x 1013

Linear ramp rate T/s 1.5 2.2
Repetition time (50 GeV) s ~ 2.5 1.2/2.4
Max. stored energy kJ 800 70
Max. effective beam power kW 320 60
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PS2 integration and machine shape

• Integration requirements
– H- Injection from LPSPL
– Injection of ions from LEIR via TT10 transfer line
– Injection of protons from PS complex viaTT10 for commissioning
– Extraction towards the SPS via TT10

• Region at end of TT10 transfer line from PS to SPS was identified as 
optimum location for PS2

• Machine shape
– Optimisation leads towards a racetrack shape
– Two compact arcs and two long zero-dispersion straight sections
– One long straight section for all injection and extraction systems
– Second long straight section dedicated for RF and collimation
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PS2 integration
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PS2

SPL

Linac4

SPL to PS2

PS

PS/LEIR to SPS / PS2

SPS

PS2 to SPS

– “Straight” H- inj. line SPL PS2 with 
large bending radii to minimise Lorentz 
stripping of H-.

– Minimum length of inj. line TT10 PS2 
for ions and protons from PS complex. 

– Minimum length HE line PS2 SPS.



• Lattice with imaginary γtr
– No transition crossing 

• No beam losses at transition
• Simplification for operation by avoiding transition jump scheme 

– More complicated lattice design and more magnet types/families 
than in e.g. regular FODO lattices

• Lattice structure
– Injection/extraction requirements limit tuning flexibility of long 

straight sections
– Arcs have to provide not only imaginary gamma transition but also 

tuning flexibility
• Regular arc modules
• Dispersion suppressor modules to match to straight sections
• Long straight sections with zero-dispersion 

• Collaborations with LARP, US labs
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• NMC module with γt of 26i and phase 
advances of 267.4o and 157.3o.

• 2 FODO cells with 3 + 3 bends and a low-
beta doublet and 1 bend in centre

• Dispersion suppressor module
• Similar half module as NMC with 

2+3+1 dipoles for D- suppression 
and matching cell with 3 dipoles
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PS2 NMC ring lattice

Transition gamma:  37i
Tunes: 13.25 / 8.25 (h/v)
Beta max: 59 m (h and v)
Dispersion min.: -2.8 m
Dispersion max.: 3.3 m
Relative chromaticities       
-1.65 / -1.59 (h/v)
Circumference: 1346.4m
166 dipoles, 3.78m long 
(1.7T field)
132 quadrupoles in 
4+6+7 = 17 families of 
5+1 types (lengths and 
apertures), with max. 
gradient of 0.1 Tm-2

Not yet optimized
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Alternative investigations - 3-fold NMC ring

– Racetrack corresponds best to requirements but has low symmetry of 2.
– Higher (3-fold) symmetry is advantageous for structure resonances and working 

point choice but not compatible with present injection/extraction concept.
– Further investigations on working point optimization and structure resonances.

Super-periodicity of 2 versus 3
Systematic (red) and random (blue) resonances 

for 12<Qx<14 and 7<Qz<9
Two fold symmetry Three fold symmetry
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Long injection/extraction straight section

MTEBK ExtKESMS1MS2DuKInjK InjS

MTEBKT

Fast Inj H- InjExtraction Extraction

• Regular FODO with ~90 deg hor phase advance, zero dispersion.

• Split-triplet insertion in the centre, to house H- injection

• Common usage of single channel for all extractions
– Fast extraction to SPS (LHC beams)
– Multi Turn Extraction (MTE – five turns) to SPS for fixed target physcis
– Slow extraction (if required) for physics at PS2 

• Minimisation of equipment and machine impedance and space requirements
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H- injection
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Foil stripping optics

Laser stripping optics

Injection chicane

• Baseline is classical foil stripping with fast horizontal 
and vertical orbit bumpers for corr./uncorr. painting.

• Optimisation of insertion layout and optics to allow 
also integrating laser stripping.

– Collaboration with LARP and US Labs
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PS – Multi Turn Extraction: principle, simulations

Simulation 
parameters:

Hénon-like 
map (i.e. 2D 
polynomial –
degree 3 -
mapping) 
representing 
a FODO cell 
with 
sextupole 
and octupole

Phase space portrait

Tune variation• Fourth-order tune 0.25 or 0.75
– 4th order phase space topology
– Splitting of beam in 5 “islands”

with sextupoles/octopoles
• Loss-less splitting

• Extraction process
– Closed extraction bump taking 

the outer islands into the 
extraction channel 

• Similar to slow extraction
– Outer island are extracted on 

four consecutive turns
– Central island as fifth turn with 

an additional kicker
• No losses with beam gap for 

kicker rise time.
Courtesy:         
M. Giovannozzi
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PS2 RF system

• RF system requirements:
– Proton acceleration: revolution frequency ratio : 1,024 (3% tuning)
– Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly 

from upgraded LEIR at 6.7 Tm:  2,1 (110% tuning range)
– All LHC bunch spacings and patterns and beams for SPS operation

• Preferred RF option
– Tuneable 40 MHz system (18 – 40 MHz)

• Motivated by (LP) SPL 40 MHz chopping that will allow direct painting of any 
LHC bunch pattern up to 40 MHz already at injection 

• Minimizes rf gymnastics in PS2 and RF systems ( impedance 
reduction, space requirements, simplified operation)

– Feasibility of tuneable 40 MHz system (>octave) to be demonstrated
• R&D program for PS2 RF system being launched.
• Based on perpendicularly biased ferrites.

• Beam structure of 40 MHz is likely to provoke e-cloud effects all along the cycle
– Countermeasures at vacuum system level will be needed
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LHC beam production in PS

• Complicated longitudinal gymnastics to obtain identical bunches for LHC
– Triple splitting at injection and two double splittings before extraction

40 MHz fixed
RF = 40.0 MHz
1.1 × 1011 ppb

&
20 MHz fixed

RF = 20.0 MHz
2.2 × 1011 ppb

10 MHz system
RF = 9.18 MHz
4.4 × 1011 ppb

10 MHz system
RF = 3.06 MHz
13.2 × 1011 ppb

Triple splitting
at 1.4 GeV

Quadruple splitting 
at 25 GeV

PS injection:
4+2 bunches
in 2 batches

E
m

pt
y
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Acceleration
to 25 GeV 

PS ejection:
72 bunches

in 1 turn

320 ns beam gap

6 bunches
on h=7

18 bunches
on h=21

72 bunches
on h=84

Courtesy: R. Garoby
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LHC beam from PS2 (i)

• Nominal bunch train at PS2 extraction
– h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
– 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)

• Achieved by direct painting into PS2 40 MHz buckets using SPL chopping.

• Any other bunch train pattern possible down to 25 ns spacing
– Straightforward with SPL 40 MHz chopping and 40 MHz system

• (Would be limited to present schemes (75 ns, 1, 12, bunches etc…) with a 
10 MHz RF system and “classical” splitting.)

• Beam parameters
– Extraction energy: 50 GeV
– Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
– Bunch length rms: 1 ns (identical to PS)
– Transverse emittances norm. rms: 3 micron (identical to PS)
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LHC beam from PS2 (ii)

• Example 25 ns beam from LPSPL – PS2:
– Only 2 injections (instead of 4) from PS to fill SPS for LHC
– PS2 cycle length 2.5 s instead of 3.6 s for PS

• Reduces SPS LHC cycle length from 21.6 to 13.3 s (gain 3x3.6 – 1x2.5)

1  2 Booster

SPS injection plateau 3x3.6 s = 10.8 s
up to 4 consecutive injections

1  2 Booster 1  2 Booster 1  2 Booster

PS

LPSPL LPSPL

SPS plateau ~2.5 s
2 injections

PS2
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High intensity physics beam for SPS

– PS2 provides up to twice line density of PS high-intensity beam
– Twice circumference gives up to~4 times more intensity in total 

• ~1.0E14 per PS2 cycle
– Five-turn extraction will fill SPS with single shot instead of two from PS

• End up with twice more intensity in SPS than at present
• No injection flat bottom in the SPS (two shot filling from PS presently)

– Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)  
• ~6E11 protons per PS2 40 MHz bucket 1.2E11 in every 5th SPS 200 MHz bucket

SPS 23 micros

SPS 23 micros

PS2 = 15/7PS = 15/77 SPS
2/77 SPS non-filled 
because of geometry 
(0.6 micros)

5 gaps for LSS4 
extraction kicker 
rise/fall (1 micros)
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Summary

• PS2 main parameters are defined, based on LHC requirements

• Design optimised for integration in the existing and future   
CERN accelerator complex

• Preferred options for lattice, RF concept, injection and 
extraction layout have been identified

• Goal is to provide a conceptual design report for approval by 
mid 2012 and project start in 2013

• Thanks to all PS2 WG members and all colleagues in LARP and 
in other labs for contributing to the design study
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