

PS2 Design Optimization

Michael Benedikt, Brennan Goddard

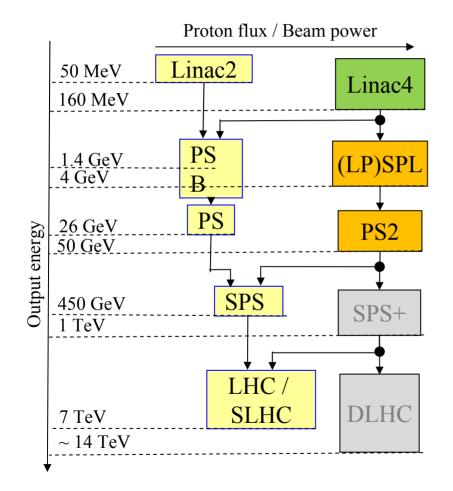
for the PS2 Working Group

- Context CERN injector complex upgrade for LHC
- **PS2** performance requirements and main parameters
- PS2 integration in present/future accelerator complex
- Lattice design, injection and extraction, RF system
- Beam performance for LHC and high intensity beams
- Summary

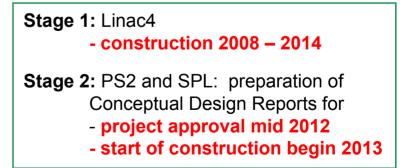
- Improve reliability and reduce vulnerability of injector chain for LHC era: Ageing accelerators (PS is 49 years old!) operating far beyond initial parameters
 - $\Rightarrow~$ need for new accelerators designed for the needs of SLHC
- 2. Remove injector performance limitations:

Excessive incoherent space charge tune spreads ΔQ_{SC} at injection in the PSB (50 MeV) and PS (1.4 GeV) because of the high required beam brightness N/ε^* .

 $\Delta Q_{SC} \propto \frac{N_b}{\varepsilon_{X,Y}} \cdot \frac{R}{\beta \gamma^2}$


with N_b : number of protons/bunch $\varepsilon_{X,Y}$: normalized transverse emittances R: mean radius of the accelerator $\beta\gamma$: classical relativistic parameters

\Rightarrow need to increase the injection energy in the synchrotrons


- Increase injection energy in the PSB from 50 to 160 MeV
- Design the PS2 (PS successor) with an acceptable space charge effect for the maximum beam envisaged for SLHC.
- Increase injection energy in the SPS from 25 to 50 GeV kinetic

CERN injector complex upgrade - Overview

Linac4: H- Linac (160 MeV) (LP)SPL: (Low Power) Superconducting Proton Linac (4-5 GeV) PS2: High Energy PS (~ 5 to 50 GeV – 0.3 Hz) SPS+: Superconducting SPS (50 to1000 GeV) SLHC: "Superluminosity" LHC (up to 10³⁵ cm⁻²s⁻¹) DLHC: "Double energy" LHC (1 to ~14 TeV)

PS2 design goals

For LHC operation

- Higher beam brightness within nominal transverse emittances
- Flexibility for generating various bunch spacings and bunch patterns
- Reduction of SPS injection plateau and LHC filling time

General design goals

- High reliability and availability
- Simplification of operation schemes for complete complex
- Low beam losses in operation for PS2 and complete complex
- Potential for future upgrades of the accelerator complex

Performance requirements and parameters

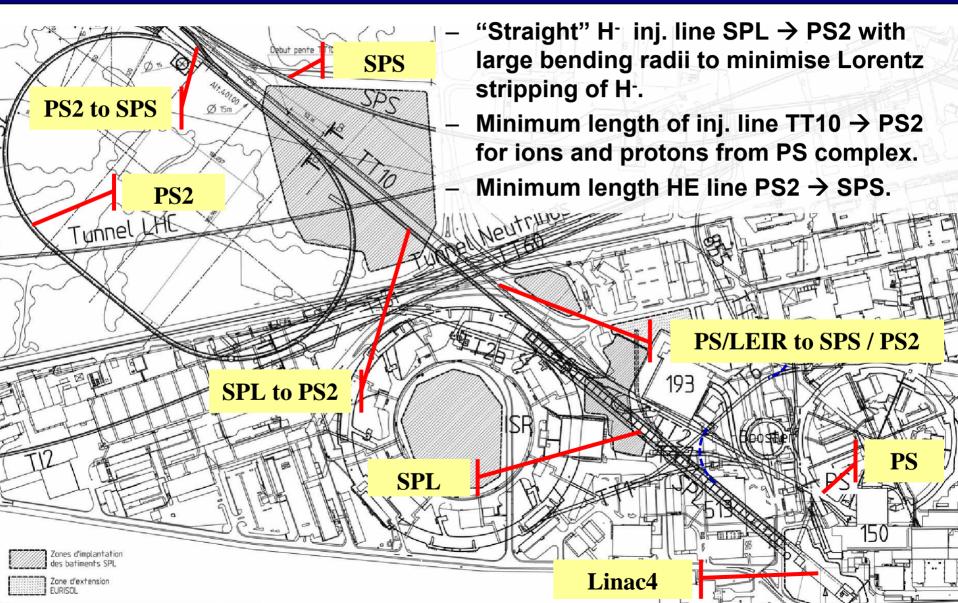
- Starting point for the design is brightness (N/ ε_n) for LHC beams
 - Design goal: Twice higher brightness than "ultimate" 25ns beam with 20% intensity reserve for transfer losses
 - 4.0×10¹¹ppb = 2 × 1.7×10¹¹ × 1.2 in transverse emittances of $3\mu m$
- Injection energy
 - Determined by the beam brightness of the LHC beam
 - Limiting the incoherent space charge tune spread at injection to below 0.2 requires
 - 4 GeV injection energy
- Extraction energy
 - Injection into SPS above transition energy to reduce space charge effects
 - Higher energy gives smaller transverse emittances and beam sizes and therefore reduced losses
 - Potential for long-term SPS replacement with higher energy
 - ~50 GeV extraction energy

PS2 machine size

- Constraints from desired extraction energy ~50 GeV
 - Iron dominated dipoles aiming at $B \le 1.7 T$
 - PS2 will have roughly twice PS size i.e. R ~ 200 m and C ~ 1250 m.
- Constraints from filling SPS for physics
 - Complete filling of SPS circumference is desired for high intensity physics
 - Using a 5-turn multi-turn extraction scheme, similar to PS (2 x 5 turns):
 - Ideal PS2 length is 1/5 SPS = 11/5 PS = 2.2 PS.
- Constraints from PS2-SPS synchronisation (rf cogging)
 - N x h_{PS2} = K x h_{SPS} is needed for correct synchronisation
 - (N/K) = 77/15 is best choice (5 PS2 slightly shorter than the SPS.)
 - h (200MHz SPS) = 4620, h (40MHz SPS) = 924, h (40MHz PS2) = 180
- Optimum length for PS2 from above arguments
 - PS2 = 15/77 SPS = 15/77 * 11 PS = 15/7 PS.
 - 1346.4 m circumference, 214.3 m average radius

PS2 main parameters

Parameter	unit	PS2	PS
Injection energy kinetic	GeV	4.0	1.4
Extraction energy kinetic	GeV	20 - 50	13 - 25
Circumference	m	1346	628
Max. bunch intensity LHC (25ns)	ppb	4.0 x 10 ¹¹	1.7 x 10 ¹¹
Max. pulse intensity LHC (25ns)	ppp	6.7 x 10 ¹³	1.2 x 10 ¹³
Max. pulse intensity FT	ppp	1.0 x 10 ¹⁴	3.3 x 10 ¹³
Linear ramp rate	T/s	1.5	2.2
Repetition time (50 GeV)	S	~ 2.5	1.2/2.4
Max. stored energy	kJ	800	70
Max. effective beam power	kW	320	60

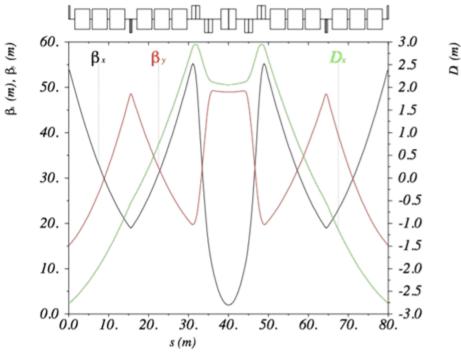


PS2 integration and machine shape

- Integration requirements
 - H⁻ Injection from LPSPL
 - Injection of ions from LEIR via TT10 transfer line
 - Injection of protons from PS complex viaTT10 for commissioning
 - Extraction towards the SPS via TT10
- Region at end of TT10 transfer line from PS to SPS was identified as optimum location for PS2
- Machine shape
 - Optimisation leads towards a racetrack shape
 - Two compact arcs and two long zero-dispersion straight sections
 - One long straight section for all injection and extraction systems
 - Second long straight section dedicated for RF and collimation

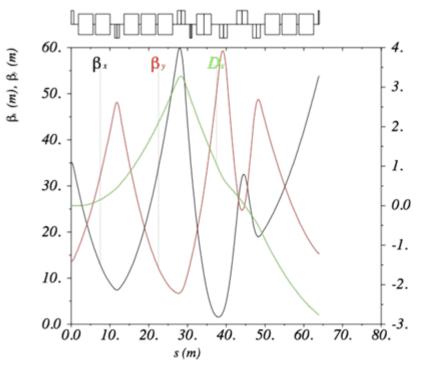
PS2 integration

PS2 lattice design


- Lattice with imaginary γ_{tr}
 - No transition crossing
 - No beam losses at transition
 - Simplification for operation by avoiding transition jump scheme
 - More complicated lattice design and more magnet types/families than in e.g. regular FODO lattices

Lattice structure

- Injection/extraction requirements limit tuning flexibility of long straight sections
- Arcs have to provide not only imaginary gamma transition but also tuning flexibility
 - Regular arc modules
 - Dispersion suppressor modules to match to straight sections
 - Long straight sections with zero-dispersion
- Collaborations with LARP, US labs


PS2 NMC module and dispersion suppressor

- NMC module with γ_t of 26i and phase advances of 267.4° and 157.3°.
- 2 FODO cells with 3 + 3 bends and a lowbeta doublet and 1 bend in centre

• Dispersion suppressor module

• Similar half module as NMC with **2+3+1** dipoles for D- suppression and matching cell with **3** dipoles

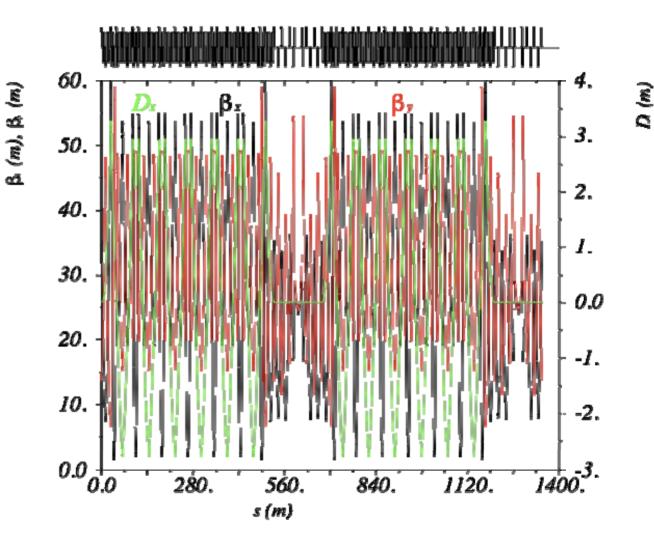
D (m)

PS2 NMC ring lattice

Transition gamma: 37i

Tunes: 13.25 / 8.25 (h/v)

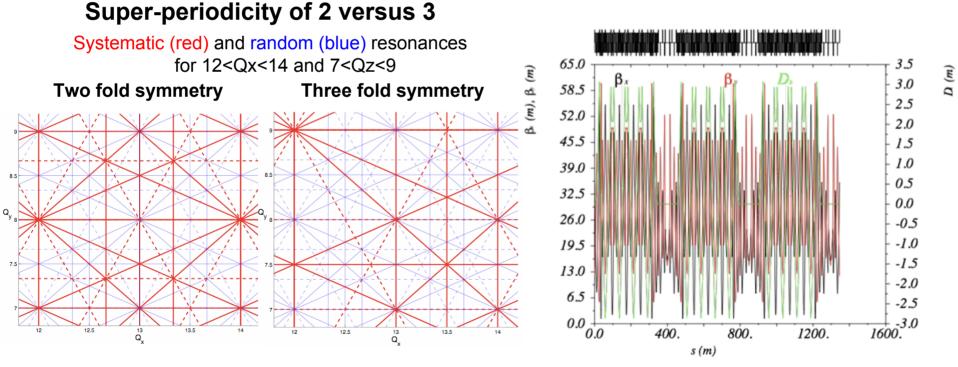
Beta max: 59 m (h and v)

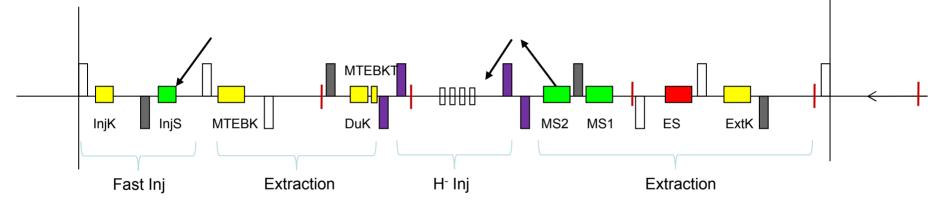

Dispersion min.: -2.8 m 5 Dispersion max.: 3.3 m 4

Relative chromaticities -1.65 / -1.59 (h/v)

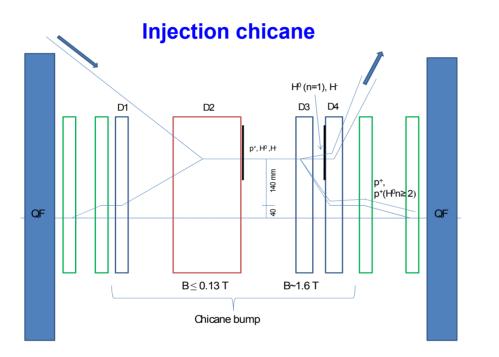
Circumference: 1346.4m

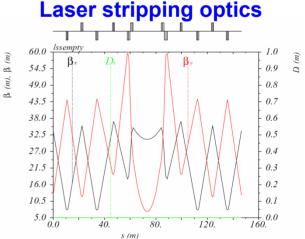
166 dipoles, 3.78m long (1.7T field)


132 quadrupoles in 4+6+7 = 17 families of 5+1 types (lengths and apertures), with max. gradient of 0.1 Tm⁻² Not yet optimized


Alternative investigations - 3-fold NMC ring

- Racetrack corresponds best to requirements but has low symmetry of 2.
- Higher (3-fold) symmetry is advantageous for structure resonances and working point choice but not compatible with present injection/extraction concept.
- Further investigations on working point optimization and structure resonances.


- Regular FODO with ~90 deg hor phase advance, zero dispersion.
- Split-triplet insertion in the centre, to house H- injection


- Common usage of single channel for all extractions
 - Fast extraction to SPS (LHC beams)
 - Multi Turn Extraction (MTE five turns) to SPS for fixed target physcis
 - Slow extraction (if required) for physics at PS2
 - Minimisation of equipment and machine impedance and space requirements

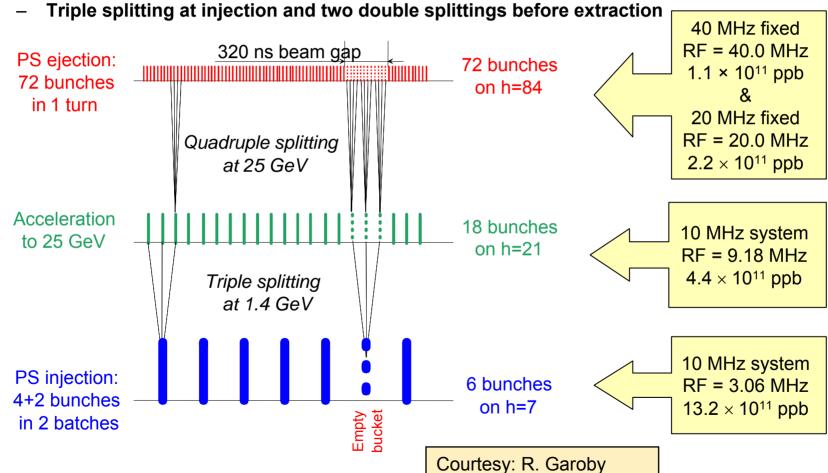
H⁻ injection

- Baseline is classical foil stripping with fast horizontal and vertical orbit bumpers for corr./uncorr. painting.
- Optimisation of insertion layout and optics to allow also integrating laser stripping.
 - Collaboration with LARP and US Labs

PS – Multi Turn Extraction: principle, simulations

Tune variation Fourth-order tune 0.25 or 0.75 n0.253 **∃0.251** 4th order phase space topology **=**0.249 80.247 $\tilde{\Xi}_{0.245}$ Splitting of beam in 5 "islands" 0.243 L 4000 8000 12000 16000 with sextupoles/octopoles 20000 Turn number Loss-less splitting 0.6 x Simulation Phase space portrait 2000 **Extraction process** parameters: 1750 **Closed extraction bump taking** Hénon-like 0.36 map (i.e. 2D the outer islands into the 1500 polynomial extraction channel degree 3 -0.12 1250 Similar to slow extraction mapping) representing 1000 Outer island are extracted on a FODO cell -0.12 with four consecutive turns 750 sextupole Central island as fifth turn with 500 and octupole -0.36 an additional kicker 250 No losses with beam gap for -0.6 <u>-</u>0.6 kicker rise time. 0.6 -0.12 0.12 0.36 -0.36 Courtesy: Х

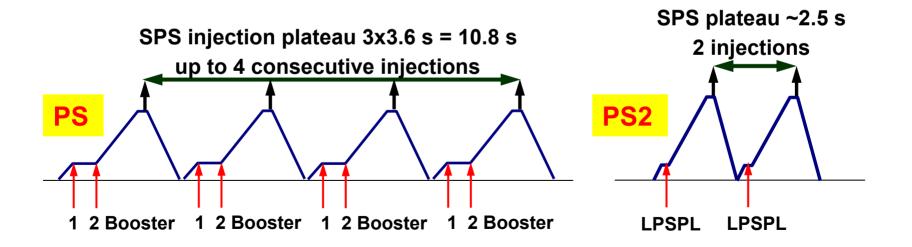
M. Giovannozzi


PS2 RF system

- RF system requirements:
 - Proton acceleration: revolution frequency ratio : 1,024 (3% tuning)
 - Pb54+ ions revolution frequency ratio in PS&PS2 with injection directly from *upgraded LEIR* at 6.7 Tm: 2,1 (110% tuning range)
 - All LHC bunch spacings and patterns and beams for SPS operation
- Preferred RF option
 - Tuneable 40 MHz system (18 40 MHz)
 - Motivated by (LP) SPL 40 MHz chopping that will allow direct painting of any LHC bunch pattern up to 40 MHz already at injection
 - Minimizes rf gymnastics in PS2 and RF systems (→impedance reduction, space requirements, simplified operation)
 - Feasibility of tuneable 40 MHz system (>octave) to be demonstrated
 - R&D program for PS2 RF system being launched.
 - Based on perpendicularly biased ferrites.
- Beam structure of 40 MHz is likely to provoke e-cloud effects all along the cycle
 - Countermeasures at vacuum system level will be needed

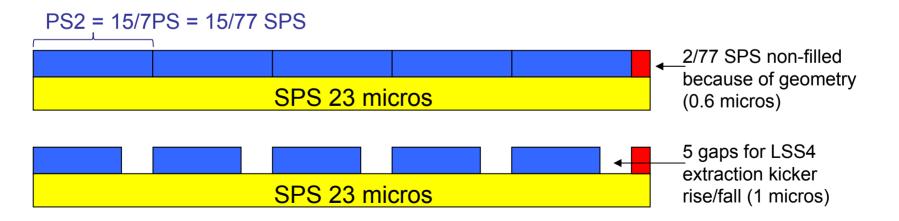
LHC beam production in PS

Complicated longitudinal gymnastics to obtain identical bunches for LHC


LHC beam from PS2 (i)

- Nominal bunch train at PS2 extraction
 - h=180 (40 MHz) with bunch shortening to fit SPS 200 MHz.
 - 168 buckets filled leaving a kicker gap of ~ 300 ns (50 GeV!)
 - Achieved by direct painting into PS2 40 MHz buckets using SPL chopping.
- Any other bunch train pattern possible down to 25 ns spacing
 - Straightforward with SPL 40 MHz chopping and 40 MHz system
 - (Would be limited to present schemes (75 ns, 1, 12, bunches etc...) with a 10 MHz RF system and "classical" splitting.)
- Beam parameters
 - Extraction energy: 50 GeV
 - Maximum bunch intensity: 4E11 / protons per LHC bunch (25 ns)
 - Bunch length rms: 1 ns (identical to PS)
 - Transverse emittances norm. rms: 3 micron (identical to PS)

LHC beam from PS2 (ii)


- Example 25 ns beam from LPSPL PS2:
 - Only 2 injections (instead of 4) from PS to fill SPS for LHC
 - PS2 cycle length 2.5 s instead of 3.6 s for PS
 - Reduces SPS LHC cycle length from **21.6** to **13.3 s** (gain 3x3.6 1x2.5)

High intensity physics beam for SPS

- PS2 provides up to twice line density of PS high-intensity beam
- Twice circumference gives up to~4 times more intensity in total
 - ~1.0E14 per PS2 cycle
- Five-turn extraction will fill SPS with single shot instead of two from PS
 - End up with twice more intensity in SPS than at present
 - No injection flat bottom in the SPS (two shot filling from PS presently)
- Clean bunch to bucket transfer PS2 40 MHz to SPS 200 MHz (cf. LHC)
 - ~6E11 protons per PS2 40 MHz bucket \rightarrow 1.2E11 in every 5th SPS 200 MHz bucket

Summary

- PS2 main parameters are defined, based on LHC requirements
- Design optimised for integration in the existing and future CERN accelerator complex
- Preferred options for lattice, RF concept, injection and extraction layout have been identified
- Goal is to provide a conceptual design report for approval by mid 2012 and project start in 2013
- Thanks to all PS2 WG members and all colleagues in LARP and in other labs for contributing to the design study