

Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

E. Wright and K. Nguyen Beam Wave Research, Inc., 5406 Bradley Blvd., Bethesda, MD 20814 ewright.bwresearch@comcast.net, knguyen.bwresearch@comcast.net

J. Pasour, S. Cooke, and B. Levush Code 6840, Naval Research Laboratory, Washington D.C., 20375 john.pasour@nrl.navy.mil, baruch.levush@nrl.navy.mil

I. Chernyavskiy and J. Petillo SAIC, 700 Technology Park Dr. Billerica, MA 01821 igor.chernyavskiy@saic.com, petilloj@saic.com

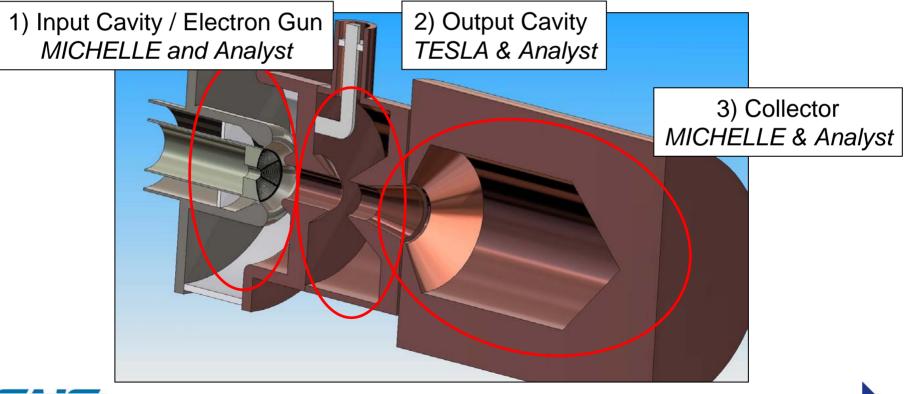
J. DeFord, B. Held Simulation Technology and Applied Research, Inc., Mequon, WI 53092 john.deford@awrcorp.com, ben.held@awrcorp.com

> *Work supported by the Office of Naval Research and Naval Sea Systems Command.

- The inductive output tube (IOT) is a linear beam amplifier that is ideally suited to high-power operation at UHF and L-band frequencies.
- The IOT RF gridded electron gun directly bunches the beam, resulting in an efficient, compact, linear amplifier.
- The IOT has become the amplifier-of-choice for UHF broadcast applications, typically at peak power levels in the 100's of kW – average power level ~ -6 dB lower. A number of high-power accelerator applications require substantially higher average power than a conventional, single-beam IOT can generate.
- A multiple-beam (MB) IOT has been proposed to overcome the power limitation of the single-beam device while maintaining its extremely attractive features.

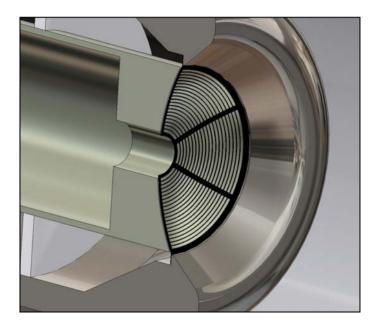
- Although conceptually simple, the design and optimization of an IOT is quite difficult.
- The input cavity is extremely complex due to the intrinsically threedimensional topology.
- Two factors greatly complicate the modeling and optimization of the RF gridded gun of the input circuit:
 - Disparate spatial scales (~1000 to 1) of the electrodes and accelerating gap compared to the extremely fine grid and cathode-grid gap.
 - Difficulty of accurately modeling beam emission at low voltages, which occur at the beginning and end of each RF extraction cycle (beam head and tail effects).

- Our team is developing a suite of modeling and simulation tools that are ideally suited to overcoming these problems and that can be extended and applied sequentially to provide an accurate, computationally efficient end-to-end design tool for the IOT and MB-IOT.
- The primary codes are:
 - MICHELLE a 3D steady-state and time-domain electrostatic PIC code.
 - Analyst a 3D electromagnetic simulation code suite.
 - TESLA a 2.5D large signal code for modeling cavity-type linear beam amplifiers.
- These physics-based design tools have been applied with great success by the vacuum electronics industry to develop an assortment of new and improved devices.
 - Initial simulation results for an example IOT follows:



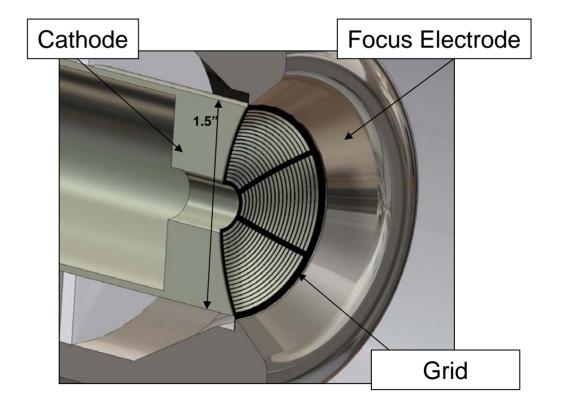
Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

- Code validation is performed on a section of a single-beam IOT model.
 - Efficient end-to-end modeling achieved by subdividing the problem into three sections.



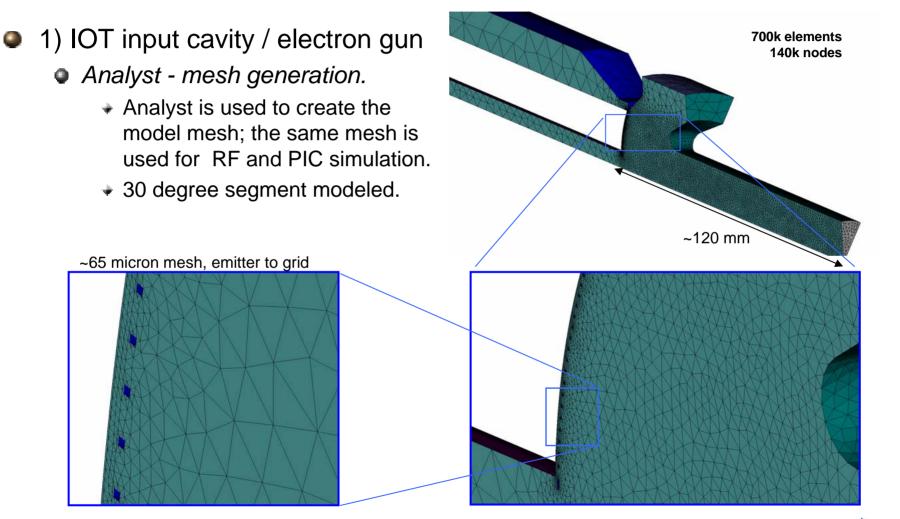
Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

- 1) IOT input cavity / electron gun modeling is a four-step process
 - Analyst Mesh generation.
 - Analyst Cathode to Grid circuit tuned to resonance at 700 MHz.
 - MICHELLE Steady-state with variable cathode to grid bias voltage; determine cutoff.
 - MICHELLE Time-domain PIC with Analyst RF fields modulating the grid.


Examples of each step will be shown in the following slides

- I) IOT input cavity / electron gun
 - Geometry and electrical parameters used in the following example.

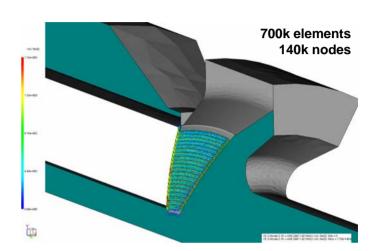
Parameter	value	units
V _o	40	kV
I _o	var.	А
E _{ak}	-60 <e<sub>gk<0 700</e<sub>	V
E _{gk} f _o	700	MHz
2a	1	inch

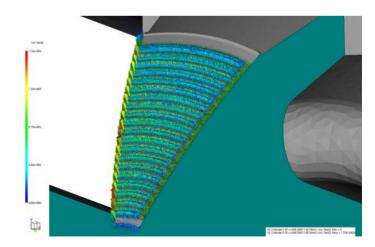


Beam Wave research, inc

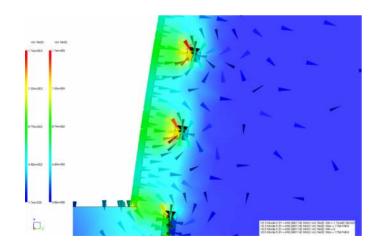
UNCLASSIFIED

Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

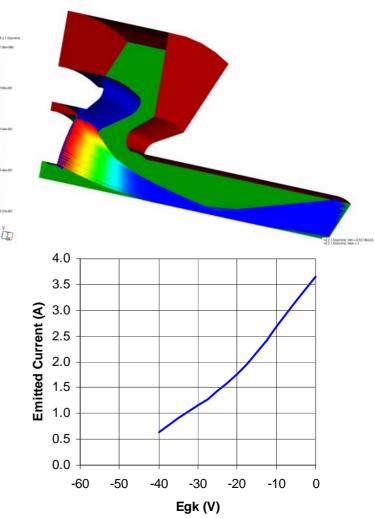



Beam Wave research, inc

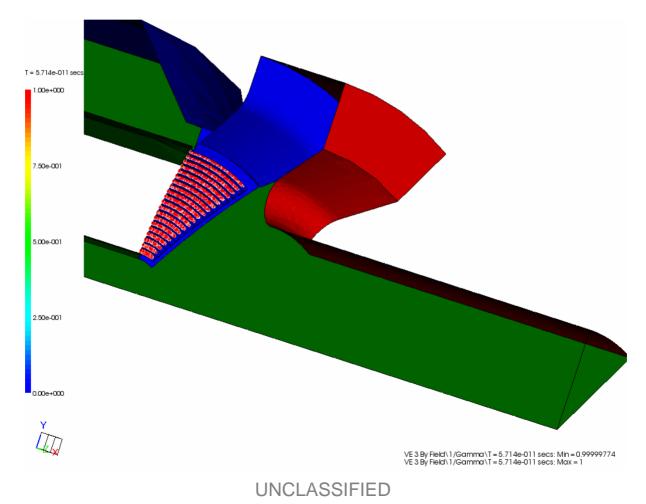
UNCLASSIFIED


Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

 1) IOT Input Cavity / Electron gun
 Analyst – Cathode to Grid circuit tuned to resonance at 700 MHz



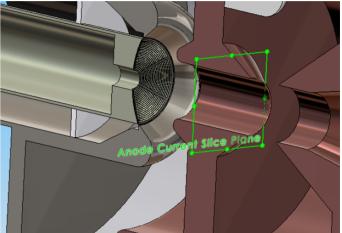
- 1) IOT Input Cavity / Electron gun
 MICHELLE Steady-state electrostatic with variable cathode to grid voltage; determine cutoff.
 - Grid to anode voltage fixed at -40 kV; grid to cathode variable (Egk).
 - Note: this model is only valid for the electrostatic case. A 60 degree segment will be required when the static magnetic focusing field is included in the model.



An Employee-Owned Company

UNCLASSIFIED

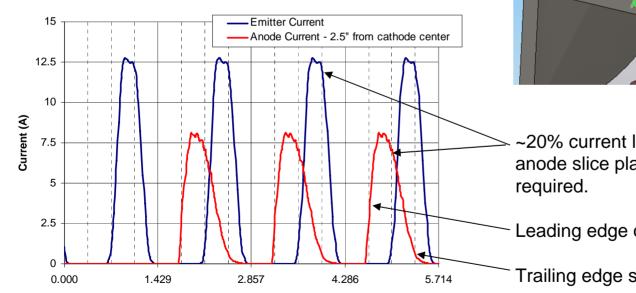
- 1) IOT Input Cavity / Electron gun
 - MICHELLE Time domain PIC; 1/100 of total particles shown.



Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

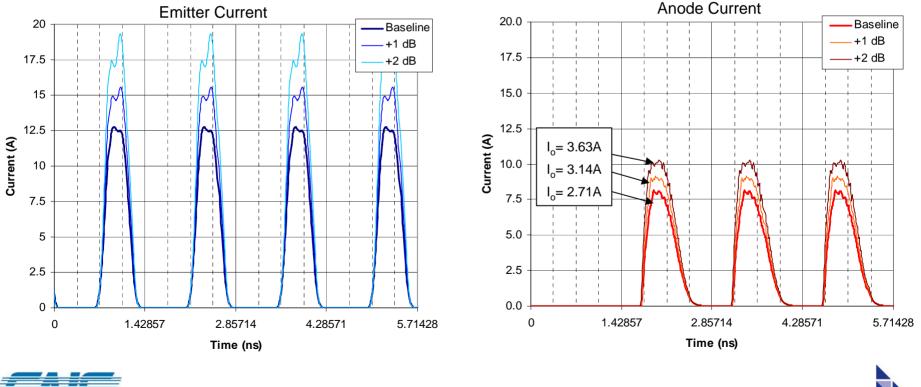
1) IOT Input Cavity / Electron gun

 MICHELLE – Time domain current from the cathode emitter and through the anode slice plane (63.5 mm from cathode).


Time (ns)

~20% current loss between emitter and anode slice plane – additional diagnostics required.

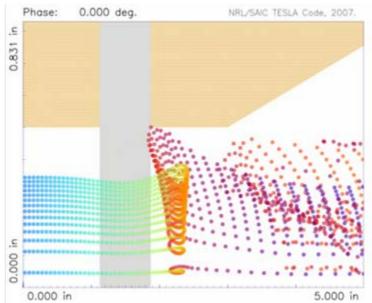
- Leading edge of the bunch well defined
- Trailing edge shows the expected tail.



Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

1) IOT Input Cavity / Electron gun

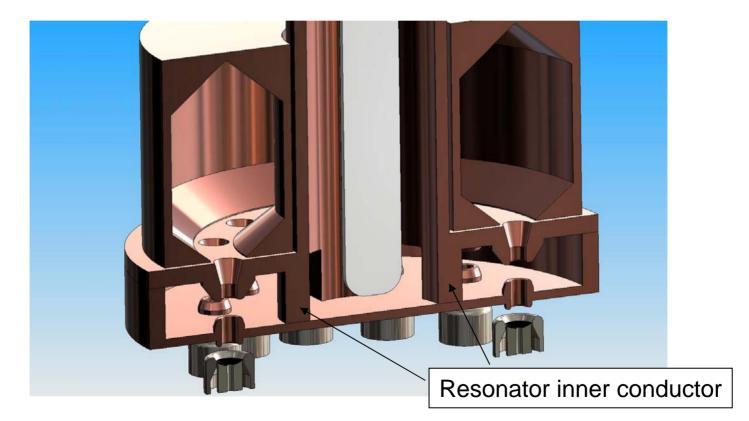
• MICHELLE – Time domain current for several input drive power levels.



Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

- 2) Output Cavity Example TESLA simulation
 - 3.14 A current density profile was imported for this example.
 - A 12 beam HOM IOT based on the single-beam data is a good starting point for future design optimization – but we need to choose a class of MB IOT.

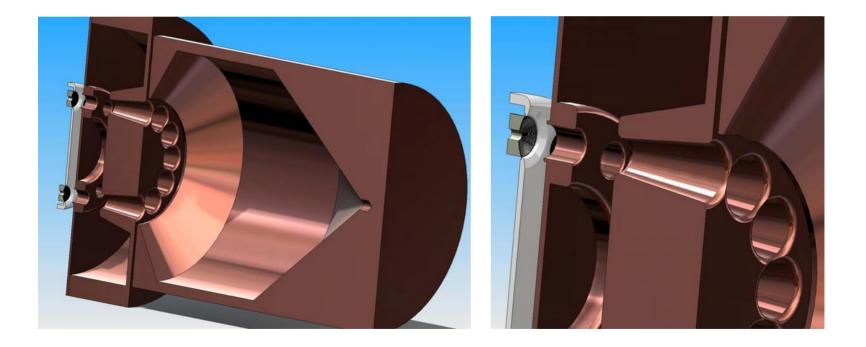
	single	twelve	
	beam	beam	
Parameter	value	value	units
Voltage	40	40	kV
Current	3.14	37.7	А
Power	84.5	1013	kW
Efficiency	67	67	%
Βz	0.06	0.06	Т



ALL SHINGTON, OS

Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

- TM_{010} -coaxial or TM_{020} -cylindrical mode MB IOT.
 - One possible approach removal of the resonator inner conductor would provide for the TM₀₂₀-cylindrical mode.



Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

• TM₀₁₀-cylindrical mode MB IOT

Another approach for high-power applications.

- Future code-development and validation effort
 - Phase II of our program will start in the coming months.
 - Code improvements include
 - Improved meshing capabilities 64 bit mesher
 - Mesh exclusion and interpolation RF mapping onto the electrostatic PIC model
 - Improved emission models
 - Implement periodic boundary conditions in Analyst GUI capability exists within MICHELLE.
 - Implement of a beam loading model.
- Future design effort
 - MB-IOT design of a megawatt-class MB IOT

Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

Summary

- Code development is underway at NRL to develop the tools necessary to optimize high-power IOTs and other density modulated devices.
- Three codes are being modified to provide end-to-end simulation of MB IOTs: MICHELLE, Analyst and TESLA.
- An example of the time-domain simulation of the IOT Gun / Input cavity was shown.
- Time-dependant current profiles, created with MICHELLE, were used to drive TESLA models to predict the IOT large signal performance.
- Several examples of MW-Class IOTs were shown.

Modeling and Design of High-Power Single-Beam and Multiple-Beam Inductive Output Tubes

Acknowledgements

We would like to thank

- 1) Office of Naval research and Naval Sea Systems Command for supporting this effort.
- 2) CPI/MPP Palo Alto for providing us with IOT design information – Bob Fickett, Tom Grant and Mike Cusick.

Thank you

