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Case to Benchmark: Emittance Growth along 
UNILAC Alvarez DTL at GSI

E [MeV/u] 
:

Tank 
:

A1 A2a A3 A4A2b

4.8 5.91.4 3.6 8.6 11.4

• 5 independent rf-tanks

• 108 MHz

• 192 rf-cells 

• F-D-D-F focusing

• Inter-tank focusing : F-D-F

• Synchr. rf-phases -(30°,30°,30°,25°,25°)

54 m
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Experimental Set-up & Procedure

• set beam current to 7.1 mA of 40Ar10+

• measure hor., ver. emittance, and long. rms-bunch length at DTL entrance

• set DTL transverse phase advance to values from 35° to 130° (undepressed)

• tune depression varied from 14% (130°) to 43% (35°)

• measure transmission, hor., and ver. rms-emittance at DTL exit

Rms-Bunch Length Measurement
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horizontal vertical

→ (α, β, ε)xy

rms-tracking 
backwards

meas. (α, β, ε)xy

guessed (α, β, ε)l

bunch length 
measurement

check (β⋅ε)l

DTLBuncher 
108 MHz

Buncher 
36 MHz

Reconstruction of Initial rms-Parameters

1. selfconsistent KV-backtracking, i.e. finding (α,β,ε)l that fit to measured bunch length

2. verification whether applied machine settings give full transmission w/o tails

start of simulations
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Reconstruction of Initial Type of Distribution
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measured initial distribution inhabits different amount of halo horizontally and vertically
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Reconstruction of Initial Type of Distribution

• Gauss, Lorentz, Waterbag, KV distributions do not fit the measured amount of halo

• Several functions tried in order to fit halo in both planes

• Function found as:

applying different powers for different planes, the amount of 
halo can be reproduced in each plane separately
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Initial Distribution and Codes

initial distribution

Gaussian cut 
at 4σ assumed

Simulations with four different codes 
as used by the participating labs:

DYNAMION (GSI)
PARMILA (SNS)
TraceWin (CEA/Saclay)
LORASR (Univ. of Frankfurt)
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Mismatch to Periodic DTL → Moderate Mismatch Case

rms-tracking algorithm for reconstruction of initial distribution was used to estimate 
mismatch to DTL
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Evolution of Simulated rms-Emittances

• Growth occurs mainly along first two tanks

• (agrees to previous UNILAC experiments)

• Lowest growth at intermediate phase advances
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• Core: good agreement (ex. 35°)

• 90°: "wings" seen in exp. & sims

• Deviations at lowest densities
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Emittances as Function of Phase Advance

horizontal vertical

• Codes reproduce the dependence on phase advance qualitatively

• Differences w.r.t. to absolute final emittance values
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Emittances as Function of Phase Advance

(horizontal + vertical) / 2

• Quantitative agreement among codes better for the sum of transverse emittances
• Reduced fluctuation of data points w.r.t. average behavior
• Experimental data within bandwidth of codes
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Mismatch to Periodic DTL → Small Mismatch Case

• D. Jeon found that UNILAC DTL might allow to measure 4th-order space charge resonance

-> Poster FR5REP078 & LINAC2008

• second campaign used just 1st DTL tank to avoid inter-tank mismatch

• algorithm for reconstruction of initial distribution used to minimize mismatch to DTL
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Emittances as Function of Phase Advance

horizontal vertical

• Codes generally underestimate horizontal emittance

• Codes generally overestimate vertical emittance

• Codes reproduce peak at about 100°
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Emittances as Function of Phase Advance

(horizontal + vertical) / 2

• Very good agreement with codes below 100°
• Codes reproduce beginning of stop-band at 90°
• Beyond 100°: codes predict decreasing emittances
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Phase Space Distributions after 1st DTL Tank
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Evidence for 4th-order resonance

• driving force is beam space charge

• resonance dominates over envelope instability

→ as predicted by D. Jeon, Poster FR5REP078 & LINAC2008
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Impact of Envelope Instability I

Simulated envelopes → no instability at σo > 90°

4th-order resonance
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Impact of Envelope Instability II
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creates small artificial 4th-order term

Simulation with KV distribution → no significant growth
(KV has no 4th-order potential term)
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Summary

• Codes describe well the behavior of sum of hor. and ver. emittances

• Within single planes agreement between measurments and codes is fair
→ Might be due to missing knowledge on initial inter-plane correlations

• Reliability of codes decreases with mismatch

• Differences among codes increase with mismatch

• Experimental evidence for 4th-order space charge resonance in linear accelerator

• Resonance dominates over the envelope instability

We acknowledge the support of the European Community – Research Infrastructure Activity under the FP6 
"Structuring the European Research Area" program (CARE, contract number RII3-CT-2003-506395)
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Data Reduction

Measurement

• projection of 6-dim to 2-dim plane

• matrix of pixels

• pixel size 0.8 mm / 0.5 mrad

• evaluation based on pixel contents

Simulations

• full 6-dim information available

to compare measurement and simulation adequately, the evaluation
procedures must be identical



L. Groening, Linac Code Benchmarking with High-Intensity Experiments at the UNILAC

TU3PBI02
Data Reduction

• particle coordinates from simulations are projected onto virtual meas. device

• projection is evaluated as a measurement



L. Groening, Linac Code Benchmarking with High-Intensity Experiments at the UNILAC

TU3PBI02

Alvarez 1st Tank

transv. emitt. meas. "t"

Buncher 36 MHz Buncher 108 MHz
Quadrupoles

long. emitt. meas. "l"

15° 15°
30°

starting point of 
simulations "s"

Construction of initial Distribution for Simulations

• measured long. rms-Twiss parameters seemed not realistic, just bunch length ok

• DTL transmission is very sensitive to 36 MHz buncher setting, i.e. long. mismatch

• applied buncher settings resulted in full DTL transmission and minimized low energy tails

-> useful in re-constructing the long. input distribution by simulations

• transv. and long. emittance were measured at different locations, i.e. at "t" & "l"

• distances from "l" and "s" to point "A" differ by 0.4 m

• to merge transv. & long. measurements together some approximations (tricks) were used

"A"
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transv. emitt. meas. "t"

Buncher 36 MHz Buncher 108 MHz
Quadrupoles

long. emitt. meas. "l"

15°
15°

30°

Starting point of simulations "s"

Construction of initial Distribution for Simulations

• to merge measurements together some approximations (tricks) were used :

• "transport" from "l" to "s" approximated by drift of 0.4 m (with space charge) 

• at "t": combine measured x&y-rms-Twiss parameters with guessed long. rms-Twiss parameters

• rms-tracking with space charge from "t" to "s-0.4m", using applied machine settings

• if bunch length at "s-0.4m" agrees reasonably with measured one at "l": -> ok

• if not: -> do different guess on long. Twiss parameters at "t"

• put "s"-rms-Twiss parameters (x,y,l) into matching routine

• compare suggested 36 MHz-buncher settings with those used during experiment

• agreement: -> ok, distribution reconstructed

• no agreement: -> do different guess on long. Twiss parameters at "t"

"A"
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• core: good agreement

• deviations at lowest densities
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Space Charge Driven Resonance of 4th-order

inside core:

outside core:

octupolar field component  ~r3 

the field caused by the core:

density of beam core with octupolar component:

external quad focusing core

force on single particle:

Resonance condition: depressed particle tune σ = 360°/4 <  σo
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Space Driven Resonance of 4th-order

Four wings are the characteristic feature of a 4th-order resonance

initial phase space final phase space

tracking many particles using particle-core model


