Space Charge Simulation on High Intensity Cyclotrons: Code Development and Applications

J. J. Yang^{1,3}, T. J. Zhang¹, A. Adelmann², S. Z. An¹, <u>S. M. Wei¹</u>, Y.J. Bi^{1,3}, Y. Z. Lin³

China Institute of Atomic Energy, China
2. PSI, Switzerland
3.TsingHua University, China

Background: History

In the past decades, new applications motivated the need of cyclotrons with higher beam intensity, in which space charge strongly affects the beam dynamics.

It is important to study its influence by means of quantitative modeling.

Space charge limits in PSI Ring cyclotron (courtesy by W.Joho, 1981)

Background: Brief review of space charge studies

Analytic Models

- Disk model by M.M.Gordon(1970s)
- Sector model by W.Joho(1980s)

Numerical Solution

- 2D serial PIC code: PICS, PICN by S. Adam and S.Koscielniak (1990s)
- 3D Parallel PIC codes: MAD9P by A. Adelmann & LIONS SP by P. Bertrand (2000s)

Neighboring bunch effects → Not much work has been done yet. E. Pozdeyev introduced "auxiliary bunch" in his serial code CYCO(2003)

Motivation: Compact Cyclotron under Constrution at CIAE

100MeV H- Cyclotron CYCIAE-100

- Designed beam current 0.2mA, future 0.5mA
- Injection energy is 40keV
- Turns number is about 310
- Energy gain per turn is about 0.4MeV @ extraction
- Multi-turn extraction by stripper @ radius of 1.9m

Motivation: Compact Cyclotron under Constrution at CIAE

 Turn separation ΔR is less than 6mm at the main acceleration region.

•At extraction point, $\Delta R=3mm$. Smaller than beam size, multibunches will overlap.

Characteristics of OPAL-CYCL

- > 3D parallel PIC code for cyclotrons and FFAGs
- Based on several other framework (IPPL, CLASSIC, H5Part, HDF5)
- > Use time as independent variable
- Solve Poisson equation with FFT methods and energy bin methods
- Use 4th-order RK as the integrator
- Track in global Cartesian coordinates
- Store intermediate phase space data in H5Part format
- Has three working modes:
 - Single particle tracking mode
 - Tune calculation mode
 - Multiple particles tracking mode including space charge effects

Equations of Motion

Equations of motion of single charged particle in electromagnetic field:

$$\dot{P} = F(v, x, t) = q(v \times B + E)$$
$$E = E_{ext} + E_{self}$$

$$B = B_{ext} + B_{self}$$

E_{ext},B_{ext} ← measured field map or commercial software

 E_{self} , B_{self} solve Poisson equation

- Wake field & image charge effects are smaller than space charge
- Particles relative motion in a bunch is nonrelativistic

3D Parallel Poisson Solver: P-M/FFT methods

Space charge fields can be obtain by solving the Poisson equation using Particle-Mesh (P-M) methods.

Solve Poisson equation on a rectangular domain with open BC

• A 3D rectangular grid which contains all particles is built (following quantities with superscript of D means on grid). The solution of the discretized Poisson equation with $\vec{k} = (l, n, m)$

$$\nabla^2 \phi^D(\vec{k}) = -\frac{\rho^D(\vec{k})}{\varepsilon_0}, \vec{k} \in \Omega^D$$

 $\Phi^{\rm D}$ is given by convolution with the appropriate discretized Green's function $G_{\rm D}$:

$$\phi^{\scriptscriptstyle D} = \rho^{\scriptscriptstyle D} * G^{\scriptscriptstyle D}$$

Neighboring bunch effects: Multi-bunch model

Multi-bunch model

In our model, the injection-to-extraction simulation is divided into two stages:

- First stage, big $\Delta R \Rightarrow$ single bunch tracking
- Second stage, small $\Delta R =>$ multiple bunches tracking

The working mode transfers from single bunch mode to multiple bunches mode automatically when ΔR is comparable with the size of bunch.

> Remark

- Fully self-consistent model of dealing with radially neighboring bunches effects in time domain
- Using multiple bunches simulation, neighboring bunch effects can be evaluated precisely

Neighboring bunch effects: flow chart

Parallel Scalability: Test on Cray XT3 at CSCS, Switzerland

Time to solution is reduced approximately by a factor of 60, (256P Vs 1P).

Application I: AEO

Calculation of the accelerating reference orbit of CYCIAE-100

Application I : betatron tune

Application I : Eigen ellipse calculation

Eigen-ellipse @ 1.49MeV Nu_r= 1.04 Nu_z=0.45

Application I : coasting beam @ 1.49MeV

Mismatching in radial direction caused by space charge

ApplicationI: single bunch from 1.49MeV to 100MeV

Observation:

Axial: space charge cause mismatching and enlarge the envelope

Longitudinal: vortex motion caused by space charge can reduce the phase width significantly

Application I : neighboring bunch effects

Setup:

- 17 bunches injected, 10⁵ particles per bunch
- 256×32×32 mesh size
- Gaussian distribution

Animation of multi-bunch injection for CYCIAE-100

Remark:

Because the multi-bunches overlap heavily at large radial area on this machine, quantitative analysis is not easy. More detail study is under going.

Application II : neighboring bunch effects

Conclusions:

- Establish a physical model which covers neighboring bunch effects self consistently
 Develop a 3D parallel PIC code OPAL-CYCL
 Perform the first parallel simulation of multiple bunches in compact cyclotron
 Study space charge effects on CYCIAE-100
 - and PSI Ring

Contact J. J. Yang For more info.

email: yangjianjun00@mails.tsinghua.edu.cn

