

Accelerator RaD for the European ADS demonstrator

J-Luc BIARROTTE, CNRS-IN2P3 / IPN Orsay, France

On behalf of the EUROTRANS WP1.3 working group

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

1. The European ADS demonstrator project

2. The XT-ADS linac reference scheme
 3. The reliability issue
 4. Related R&D topics
 5. Conclusion

Accelerator Driven Systems

1. Overall purpose

- Reduce the nuclear wastes radio-toxicity, volume
 & heat load before underground storage
- 2500 tons of spent fuel are produced every year by the EU reactors (25 t Pu, 3.5 t MA, 3 t LLFP)

2. Available strategy: P&T

- Partitioning: chemical separation of Pu, MA & FP
- Transmutation: use of the waste as a fuel in DEDICATED transmuter systems

3. The ADS transmuter system

- A subcritical reactor (k_{eff}<1), in which the chain reaction is not self-sustained
- An intense spallation source, that provides the "missing" neutrons

From ETWG Report, 2001

PROGRAMME

Fig. 1 – Ingestion radio-toxicity of 1 ton of spent nuclear fuel. With a separation efficiency of 99.9% of the long-lived by-products from the waste, followed by transmutation, reference radiotoxicity levels can be reached within 700 years

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

The EUROTRANS programme

- EURopean research programme for the TRANSmutation of high level nuclear waste in an Accelerator Driven System
- EU FP6 programme (2005-2010)
- More than 40 research agencies, universities
 & nuclear industries
- Expands the EU FP5 project PDS-XADS (2001-2004)
- Includudes 5 distinct research Domains (see also J-M.DE CONTO TU6PFP028)

Main GOAL of the EUROTRANS programme

- Advanced design of a 50-100 MWth eXperimental facility demonstrating the technical feasibility of Transmutation in an ADS (XT-ADS/MYRRHA, short-term realisation)
- Generic conceptual design (several 100 MWth) of a European Facility for Industrial Transmutation (EFIT, long-term realisation)

Transmutation Demonstration

1. MYRRHA/XT-ADS (ADS prototype)

- <u>Goals:</u>
 - Demonstrate the concept (coupling of accelerator + spallation target + reactor),
 - Demonstrate the transmutation
 - Provide a fast-spectrum irradiation facility for material & fuel developments

Features:

- 50-100 MWth power
- k_{eff} around 0.95
- 600 MeV, 2.5 mA proton beam
- Highly-enriched MOX fuel
- Pb-Bi Eutectic coolant & target

2. EFIT (Industrial Transmuter)

- <u>Goals:</u>
 - Maximise the transmutation efficiency
 - Easiness of operation and maintenance
 - High level of availability for a costeffective transmutation
- Features:
 - Several 100 MWth power
 - k_{eff} around 0.97
 - 800 MeV, 20 mA proton beam
 - Minor Actinide fuel
 - Pb coolant & target (gas as back-up solution)

High-power proton CW beams

 Table 1 – XT-ADS
 Ind EFIT proton beam general specifications

		XT-ADS	EFIT			
Maximum beam intensity		2.5 – 4 mA	20 mA			
Proton energy		600 MeV	800 MeV			
Beam entry	Vertically from above					
Beam trip number	< 20 pe	er year (exceeding 1 second)	< 3 per year (exceeding 1 second)			
Beam stability		Energy: ± 1 %, Intensity: ± 2 %, Size: ± 10 %				
Beam footprint on target	Circula	arnothing 5 to 10 cm, "donut-shaped"	An area of up to 100 cm² must be "paint- able" with any arbitrary selectable intensity profile			
Beam time structure		CW, with 200 μ s zero-current holes every 10 ⁻³ to 1 Hz, + pulsed mode capability (repetition rate around 50 Hz)				

Extrememely high reliability required !!!

1. The European ADS demonstrator project

2. The XT-ADS linac reference scheme

3. The reliability issue

- 4. Related R&D topics
 - 5. Conclusion

SUPERCONDUCTING LINAC

Highly modular and upgradeable; Excellent potential for reliability ; Very good efficiency

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

SIXTH FRAMEWORK

PROGRAMME

JROTRANS

- INTEGRATED PROJECT ON EUROPEAN TRANSMUTATION -

Linac front-end

352 MHz RFQ characteristics

Parameters	Values
Beam Current [mA]	30
Frequency [MHz]	352
Input Energy [keV]	50
Output Energy [MeV]	3.0
Inter-Electrode Voltage [kV]	65
Kilpatrick Factor	1.69
$\mathcal{E}_{in}^{trans., n., rms} [\pi \text{ mm-mrad}]$	0.20
Output Synchronous Phase [°]	-28.8
Minimum Aperture [cm]	0.23
Maximum Modulation	1.79
$\mathcal{E}_{out}^{x., n., rms} [\pi \text{ mm-mrad}]$	0.21
$\mathcal{E}_{out}^{y, n, rms} [\pi \text{ mm-mrad}]$	0.20
$\mathcal{E}_{out}^{z, rms}$ [MeV-deg]	0.09
Electrode Length [cm]	431.8
Beam Transmission [%]	99.9
	-

Cavity	Gaps (qs [°])		Length [cm]	W _{s,out} [MeV]	Eacc* [MV/m]
Rebuncher I	2	(-90°)	~7	3.0	2.79
RT-CH	11 4 8	(0°) (-40°) (0°)	~160	5.2	2.72
Rebuncher II	2	(-90°)	~7	5.2	5.11
SC-CH I	3 10	(-40°) (0°)	~90	7.5	3.99
SC-CH II	4 10	(-40°) (0°)	~105	10.4	3.97
SC-CH III	4 12	(-40°) (0°)	~130	14.3	3.98
SC-CH IV	4 12	(-40°) (0°)	~145	18.3	3.96

* Eacc: active acceleration gradient.

- Classical 4-vane RFQ with moderated Kp
- DTL booster using CH structures (KONUS beam dyn.)
- 17 MeV gained in less than 15 metres

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

Superconducting linac

- Modular, independently-phased accelerating structures
- Moderate gradients (50mT B_{pk}, 25MV/m E_{pk}) & energy gain per cavity
- Overall length: about 225 metres

In2p3

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

-20

Xmax =34.629 mm Ymax =33.018 mm

20

Ð,

1.40

-40

Final beam line to reactor

- Final beam line guarantees the position of the beam spot and ensures that only particles of nominal energy are delivered (doubly-achromatic lines)

X(mm) - V(mm)

- Also guarantees the required "donut-shape" distribution at the target (redundant beam scanning)

36mm

20

40

X (m)

Beam dynamics

PROGRAMME

Less than 10% emittance growth in the whole 17 MeV front-end

(RFQ simulations with PARMTEQM, DTL simulations with LORASR)

Less than 5% emittance growth in the 17-600 MeV SC linac section

(simulations with TRACEWIN)

INTEGRATED PROJECT ON EUROPEAN TRANSMUTATION -

Advanced reference design

Goal = reach a frozen advanced design by 2010...

Advanced reference design

... with assessed start-to-end beam dynamics

TraceWin (CEA)

- Envelope code with 1st order space charge
- ✓ Interacting with GenLinWin for the SC linac longitudinal optimization

Benchmarked with: Transport (CERN), Beta (CEA), Path (CERN)...

Partran (CEA)

- ✓ Multiparticle code, with 3D space charge routines.
- ✓ Coupling with TOUTATIS (CEA) for RFQ multiparticle simulations

Benchmarked with: Lions (GANIL), Impact (LANL), Dynamion (GSI), Parmila (LANL), Alodyn (INFN), Path (CERN)...

Code package crucial capabilities

✓ <u>« Close to real » beam tuning procedures</u> using simulated diagnostics

✓ <u>Use of 3D field maps</u> for most of the elements (focusing magnets, RF cavities), high-order aberrations taken into account for the others (dipoles)

✓ Possibility to perform <u>statistical error studies</u>

1. The European ADS demonstrator project 2. The XT-ADS lines reference scheme

3. The reliability issue

4. Related R&D topics 5. Conclusion

The reliability requirement

- **** **IP-EUROTRANS** integrated Project on European Transmutation-
- Beam trips longer than 1 sec are forbidden to avoid thermal stresses & fatigue on the ADS target, fuel & assembly & to provide good availability. SPECIFICATION : less than 5 per 3-month operation cycle (MYRRHA / XT-ADS)
- Reliability guidelines have been followed during the ADS accelerator design
 - 1. Strong component design ("overdesign")
 - All components are derated with respect to technological limitations
 - For every linac main component, a prototype is being designed, built and tested
 - 2. Inclusion of redundancies in critical areas
 - Possible doubled front-end (hot stand-by injector), solid-state RF power amplifiers where possible...
 - 3. Enhance the capability of fault-tolerant operation
 - "Fault-tolerance" = ability to pursue operation despite some major faults in the system
 - Expected in the independently-phased superconducting linac (for both RF faults and QP doublets faults)

Local compensation method

- **CONTEXT:** We have a strongly non-relativistic beam, and any energy loss will imply a phase slip along the linac, increasing with the distance, that will push the beam out of the stability region -> BEAM LOSS
- **<u>GOAL</u>:** Recover most of the SCRF cavities fault conditions without stopping/loosing the beam more than 1sec

STRATEGY:

- "Local compensation method" in the case of a RF unit or cavity failure : adjacent cavities are retuned to provide the missing energy gain to the beam
- Requires independently-powered RF cavities, good velocity acceptance, moderate energy gain per cavity & tolerant beam dynamics design
- FAST retuning to be performed using pre-tabulated set-points databases stored into the digital LLRF FPGAs

In every case, with an appropriate retuning, the beam can be transported up to the highenergy end without any beam loss (100 % transmission, small emittance growth), and within the nominal target parameters.

- from 4 to 8 surrounding cavities are used
- 20 to 30% margin on RF powers and accelerating fields is required
- OK for all energies from 5 to 600 MeV, but significantly more difficult below 15 MeV

Same phylosophy can be applied to quadrupole failures

- The situation is less critical : if a quadrupole fails, beam losses occur, BUT if the whole doublet fails, no loss: it is thus recommended to have 1 power supply per doublet

- After a QP doublet failure, a (slow) additional retuning of neighboring doublets is recommended to decrease mismatching

Fast fault-recovery scenario

OK... but retuning should be performed in less than 1 second in the case of a failure event

Simulation code development

- Based on TraceWin (CEA)

- For all the linac cavities, a RF cavity model w/ control loop is included
- Very powerful tool, able to <u>analyze the effect of</u> <u>time-dependent perturbations</u> while simulating the whole beam behavior (long. + transv. planes)

Figure 12 : Transverse beam distribution at 220 $\mu s,$ in red are plotted the losses

Definition of a reference "fast fault-recovery scenario"

- detect (or anticipate) the RF fault (via dedicated diagnostics & interlocks) & trigger beam shut-down

- update the new LLRF field and phase set-points of the correcting cavities (data have been determined & stored in FPGAs during commissioning)
- detune the failed cavity (w/ piezo-actuators) and cut off the failed RF loop
- trigger beam re-injection once steady state is reached

< 1 sec

PROGRAMMI

GOAL of the ANALYSIS

- Estimate the number of malfunctions of the XT-ADS accelerator that cause a beam/plant shutdown, per period of operation (3 months = 2190 hours)
- Analyse the influence of MTBFs (Mean Time Between Failures), MTTRs (Mean Time to Repair), and of the degree of redundancy & fault-tolerance on the results
- Goal MTBF: better than 500 hours

WORK PERFORMED SO FAR (to be continued)

- Reliability Block Diagram analysis using the Relex© software
 - performed by INFN & ENEA (PDS-XADS, 2004)
- Home-made Monte-Carlo simulations using Matlab
 - performed by Empresarios Agrupados (EUROTRANS, 2008)

Linac reliability analysis (2)

CLASSICAL LINAC DESIGN

- "all-series" (simplified) components
- every component failure leads to a global system failure
- poor MTBF, mostly due to the ~150 RF units

RELIABILITY-ORIENTED DESIGN

- same components MTBFs
- duplicated injector with fast switching magnet
- fault-tolerance in the SC linac

If a RF accel. unit (or QP doublet) fails, a certain number of RF units are immediately retuned around the failed cavity (these sources can not be used to compensate another failure); the failed RF unit is then fixed after 1 MTTR

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

★ What we learned from our RELIABILITY ANALYSIS

expected beam shutdowns from simulations

- Classical linac : ~100 per 3 months mission time
- Including fault-tolerance in the SCRF linac : ~15 per 3 months mission time
- Also including injector redundancy: ~ 5 per 3 months mission time

"analysis of the analysis"

- The obtained *absolute* figures remain highly questionable (very few reliable MTBF data, high complexity of the system not fully modeled)

- Fault-tolerance & redundancy can really improve the situation, by about one order of magnitude (but of course, @ a certain cost)

Reliable comments ? (2)

★ What we learn looking @ other high power facilities

Very poor reliability is generally observed

- Tens of beam trips / day

- Machines are not really designed for this issue, SNS is still young (room for improvement)

- Critical areas are usually: RF & High Voltage, ion sources & injectors, support systems (water cooling, mains), C&C and interlocks

- High-current pulsed machines are considered as less reliable than CW ones

Nevertheless, some facilities reach very interesting performance

- Very promising recent improvements at J-PARC
- Light sources facilities are more focused on reliability: ESRF (Grenoble, France) obtains routinely a MTBF of several days, and is still in progress

PROGRAMME

Figure 6. Trip frequency vs. trip duration for high power proton accelerators.

Figure 1: Evolution of the Mean Time Between Failures.

★ It seems at least not completely unrealistic to approach (and ultimately reach) the ADS accelerator reliability goal. It will imply:

- ➡ to include design de-rating, redundancy & fault-tolerance in the system
- to have a few years of commissioning and training to identify and fix the weak elements

★ Approaching the goal "from the other side" would also help !

- **c** relaxed specifications on beam trips number
- relaxed specifications on beam trips duration
- appropriate design modifications in the target/reactor system

1. The European ADS demonstrator project 2. The XT-ADS linac reference scheme 3. The reliability issue

4. Related R&D topics

5. Conclusion

Injector long reliability test run

IPHI status

- SILHI ECR p source (95kV, 100mA) operational with very promising reliability
- RFQ last sections still under fabrication
- RFQ environment 95% completed

EUROTRANS related activities

- Once IPHI commissioned, the 3 MeV beam will be continuously operated for a 2 months period @30mA
- Sharp 200 μs "beam holes" have been produced successfully pulsing the source

P-EUROTRANS

PROGRAMME

SC CH cavities development

- 19-gap superconducting CH-DTL prototype built & successfully tested @4K (up to 7MV/m) M.Busch FR5REP061

- New tests in horizontal cryostat with slow & fast tuners will come shortly
- Design of a new optimized prototype cavity suited to the XT-ADS needs (β profile, RF power needs). Construction has begun & beam tests are foreseen.

Jean-Luc Biarrotte, PAC 2009, Vancouver, May 4-8, 2009.

JROTRANS

Spoke cavities development

- Single spoke prototypes (β 0.15, β 0.35) built & successfully tested; β 0.35 reached 12.5 MV/m ($\beta\lambda$ definition)
- CW power couplers fabricated and conditioned successfully, using a 10kW solid-state amplifier E.Rampnoux WE5PFP029
- β 0.15 cavity successfully tested in horizontal cryostat with Cold Tuning System (incl. piezo-actuators) & digital LLRF loop
- Fast detuning procedures checked (< 5ms without significant instabilities during the transient)
- NEXT STEP, coming soon = global test @ full power (10kW)

700 MHz module prototyping

PROGRAMME

- 5-cell β 0.5 elliptical prototype built & successfully tested
- 150 kW CW power couplers under construction, a 80 kW IOT tube (TED) is available, to be commissioned
- Prototypical cryomodule designed, presently being built
- **GOAL1** = qualify the reliability performance of a highenergy cryomodule at full power & nominal temperature
- **GOAL2** = in the long run, provide a test bench for fast fault-recovery scenarios

Digital LLRF activities

XT-ADS DLLRF reference scheme (suited to fault-tolerance procedures)

- a FPGA chip, able to process the feedback control algorithms,
- several ADCs and DACs, to convert the received and produced signals,

JROTR

- a RAM memory, used to store set-points or save operating parameters,
- a serial bus, to communicate with the general control/command system,
- a fast serial bus, to communicate with adjacent boards.

1st IPNO prototype showed very good regulation stability with spoke cavities: <1% (V) & <0.5°(ϕ) @2 σ

Figure 12: Internal architecture of FPGA

2nd IPNO prototype is presently under validation tests

SIXTH FRAMEWORK

The European ADS demonstrator project The XT-ADS linac reference scheme The reliability issue Related R&D topics

5. Conclusion

- P-EUROTRANS INTEGRATED PROJECT ON EUROPEAN TRANSMUTATION
- A reliability-oriented superconducting linac has been identified as the reference solution for the European ADS Transmutation Demonstration THANK YOU
- An advanced design of the machine is in-work, to be frozen by 2010
 for your attention !
 R&D activities will be pursued after the EUROTRANS contract
- R&D activities will be pursued after the EUROTRANS contract (ends April 2010), especially on the very challenging reliability issue
- ★ Beyond this, the MYRRHA machine ?! ★
 Conceptual Design Team being settled @ Mol, Belgium (2009-2012, supported by EU FP7)
 Goal n°1: demonstrate the transmutation
 Goal n°2: build a flexible irradiation facility as suitable replacement for the existing reactor BR2
 Timescale: fully operational in 2020