

Development of the IFMIF/EVEDA Accelerator

Alban Mosnier

CEA-Saclay, DSM/IRFU

Alban Mosnier

May 4-8, 2009 PAC'09 Vancouver, Canada

International Road Map

Advanced Materials are at a critical path

IFMIF Principles

IFMIF

IFMIF EVEDA project

in the framework of an agreement between Euratom & Government of Japan

a 6-year program has been launched in the middle of 2007, called EVEDA Engineering Validation and Engineering Design Activities includes 3 systems: Accelerator, Target and Test Facilities

The objectives of the accelerator activities are two-fold:

- to validate the technical options with the construction of the **Prototype Accelerator**: full size IFMIF accelerator from source to 1st DTL to be installed and commissioned at full beam current at Rokkasho (Japan)
- to produce the detailed integrated design of the future IFMIF Accelerator (including complete layout, safety analysis, cost, planning, etc) to be ready to start the IFMIF facility construction
- Components of the prototype accelerator provided by European institutions CEA, INFN, CIEMAT, SCK-CEN: Injector, RFQ, DTL, transport line and 1.2 MW beam dump, 175 MHz RF systems, local control systems and beam instrumentation
- Building at Rokkasho BA site, supervision of the control system, RFQ couplers, provided by JAEA

One Accelerator of IFMIF

Recipes used to cope with the high beam current

- transport lines as short as possible
- best compensation of beam space charge at low energy
- strong focusing in the RFQ
- focusing in the Linac: multi-part simulations to minimize the beam halo
- non interceptive diagnostics: micro-loss detectors along the vacuum chamber and profile monitors at the end

P. Nghiem et al (TH5PFP006) IFMIF-EVEDA Accelerators: Strategies & Choices for Optics & Beam Measur.

responsible Lab: CEA - Saclay

Coordinator: R. Gobin

INJECTOR

goal • to deliver a 100 keV deuteron beam

- high intensity (140 mA)
- > high quality (0.25 π .mm.mrad)
- high reliability

IFMIF EVEDA Accelerator System Group

ECR source selected design based on SILHI H⁺ source

(Electron Cyclotron Resonance)

Studies focused on ...

- extraction system (better maching for D)
- engineering design (compact HV platform)
- efficient radiation shielding
- fast beam interlock to implement < 10 μs

Ion Source Extraction ... 140 mA D⁺ \Rightarrow 175 mA total beam (D⁺ 80%, D₂⁺ 15%, D₃⁺ 5%) Axcel & Opera2D simulations to optimize # electrodes (4) aperture Ø (12 mm)

Alban Mosnier

May 4-8, 2009 PAC'09 Vancouver, Canada

Low Energy Beam Transport 1/2

based on a dual solenoid focusing system

total length 2.05 m minimized to restrain the beam emittance growth

movable Faraday cup & emittance measurement

challenging requirements:emittance + matching conditions to RFQ< 0.25π mm.mradhigh focusing strength

- \Rightarrow high level of space charge compensation all along the line
- injection of a specific gas in the line (krypton 4.10⁻⁵ hPa)
- HV electrode in front of the RFQ to trap the electrons (e-repeller)

Alban Mosnier

Low Energy Beam Transport 2/2

Final design of the IFMIF/EVEDA LEBT

development of a 3D particle-in-cell code (SOLMAXP) to study the space charge compensation induced by the ionization of the residual (additional) gas

LEBT parameters optimized to maximize the beam transmission through the RFQ \Leftrightarrow beam matching to the RFQ entrance N. Chauvin et al (TH5PFP004)

Space charge potential maps (cut @500 V)

Alban Mosnier

May 4-8, 2009 **PAC'09** Vancouver, Canada

responsible Lab: INFN - Legnaro

Coordinator: A. Pisent

Radiofrequency Quadrupole

- goal to bunch the dc beam from the injector
 to accelerate the beam from 0.1 to 5 MeV
- high transmission (low losses)
- minimal length with reasonable field

RFQ Beam Dynamics

Optimisation of the RFQ

- reduced length (9.8 m)
- reduced power consumption
- minimal beam loss at high energy > 1 MeV

Criteria for the 3 successive sections

- Analytic law for the voltage V(z) with a smooth increase in accelerator section
- Larger acceptance in accelerator section to reduce losses at high energy
- Physical aperture "a" minimal at GB end playing the role of beam collimation to prevent for beam loss downstream
- Peak surface electric field limited to the reasonable value of 1.8 x Kilpatrick

	Freque	ency			175	MHz
	Input	current			130	mA
	Input	emittanc	e		0.25	π mm.mrad
	Max S	Surface fi	ield		25.6	MV/m
	Lengt	h			9.78	m
-	Voltag	ge min/m	nax		79/1	32 kV
-	R0 mi	n/max			4.1/	7.1 mm
-	Transı	nission (Gaus	.)	96 %	6
-	Cu Power dissipation			n	< 650 kW	
1.8	Shaper	CB	Acce	lerator		RFoldenigut , tal 4-29-2008 9:32:14
1.6	Unapu			IGIGIOI		modulation "m"
1.4	anna a sin a sin a sin a sin a sin a sin a	en en la sura a fais en la seña de la sub has tel sur-Aracen (ניינט אין איז	
						Voltage/100 (kV)
1.2					414	Vollager 100 (XV)
1					<u> </u>	
.8						average aperture R0 (cm)
.6	an lan seastis lineastis li desera					
.4			a and a second			small aperture "a" (cm)
			1000 million 10000 million 1000 million 10000 million 1000000000000000000000000000000000			
.2				g.		

RFQ Mechanical Design

9 modules (1.1m) flanged together each module made of 2 Cu blocks A. Pepato et al (FR5REP065) Mechanical gin of the IFMIF/EVEDA RFQ

Assembling: Brazing technique

vacuum pipe

square cross section ⇒ large free surfaces available for couplers, plungers, vacuum ports

Cooling: separated ducts for vanes & for cavity skin ⇒ small deformations and linked frequency shifts under RF power heating and water cooling

RFQ - beam losses

M. Comunian calculations

Main concern: activation

- \Rightarrow extensive multi-particle simulations
- REO transmission ~ 96% for input beam Gaussian 0.2 π mm.mrad
- Losses above 1 MeV kept at low level

Sensitivity to input beam

Sensitivity to input current

worst case: gaussian 0.30 π mm mrad

May 4-8, 2009 **PAC'09** Vancouver, Canada

Drift Tube Linac

goal: • to accelerate the 125 mA CW beam

to 40 MeV for IFMIF

to 9 MeV for the prototype accelerator

while preserving the emittance &

• minimizing beam halo, beam loss

IFMIF

EVED.

n.c. Alvarez DTL replaced by s.c. HWR DTL

MS 4 cryomodules LEBT Li Target **RFO** Ion source s.c. HWR Linac 4 cryomodules mature technology better suited **2 resonator families** RFQ + MS Cryomodules 2 3&4 1 15+LEBT Cavity β geometric 0.094 0.094 0.166 Cavity length (mm) 280 180 180 Beam aperture (mm) 40 40 48 Nb cavities / cryostat 1 x 8 3 x 4 2 x 5 conservative approach 5 Nb solenoids 8 4

Moderate gradient @ 4.5 MV/m Large aperture @ 40-50 mm

IFMIF

Cryostat length (m)

Output energy (MeV)

4.64

9

4.30

14.5

page 15

6.03

26/40

Beam dynamics (HWR)

	Resonator	Solenoid
Misalignment	± 2 mm	± 1 mm
Tilt	$\pm 20 \text{ mrad}$	$\pm 10 \text{ mrad}$
Field amplitude	±1%	±1%
Field phase	±1 deg	

can sustain very **conservative alignment** and **field errors** while keeping a large safety margin between the beam occupancy and the pipe aperture

N. Chauvin et al (TH5PFP005)

Optimization Results of Beam Dynamics Simulations for the Superconducting HWR IFMIF Linac

Alban Mosnier

IFMIF

EVEL

May 4-8, 2009 PAC'09 Vancouver, Canada

Alban Mosnier

May 4-8, 2009 PAC'09 Vancouver, Canada

page 17

Cryomodule Conceptual design

HWR solenoid package Conceptual design for: cold mass support, alignment system, cryogenic pipes, vacuum pipes, interfaces, connections with all services Collecting volume: Exhaust pipes: large enough to separate diameter & path for properly GHe & LHe He 2-phase flow power coupler + coaxial transition He phase separator Vacuum tank He supply pipe Thermal shield cooled by LN2 Hor. He supply pipe: diameter large enough to be quasi isobaric all along **HWR** Conceptual design for: He cooling (forced flow mode) coupler

Alban Mosnier

IFMII

RF Power Systems

CIEMAT/CEA/SCK•CEN collaboration

RF power needs

RF power to transfer to the beam for each cavity

- < 80 kW for 1st module
- < 150 kW for last module

Standardization: identical RF sources

used for all components (RFQ, Bunchers, HWR)

with 2 different RF power ratings : 20 x 105 kW and 32 x 200 kW

only 1 type 400 kW HVPS (feeding 1 x 200 kW or 2 x 105 kW RF power units)

RF System implementation

To optimize space, improve maintenance and availability

symmetric modular system composed of removable modules

including two complete amplifiers each \Rightarrow compact & fast repair in case of failure

dummy load

Circulator

Analog Front Ends for Downconversion (RF to IF) and Upconversion (DC to RF)

Timing systems: 195 MHz (175 + 20) for downconversion synchronized with digital 80MHz clock for digital acquisition

220 kW

May 4-8, 2009 PAC'09 Vanco

9 Vancouver, Canada

- non-linear focusing for beam folding in each plane (to fold back the tails onto the core)
- final beam expander (quadrupoles)

First results, NOT optimised

HEBT & Beam Dump - P. A.

responsible Lab: CIEMAT coordinator: Beatriz Brañas

- Diagnostics-Plate for beam characterization
- 20° dipole magnet to avoid neutron backstreaming
- 8 quadrupoles for beam matching & expanding

Beam Dump 9 MeV - 1.125 MW

cartridge Ø=30 cm, L=2.50 m
 conical shape + cyl. input scraper Ø=30 cm¹⁰⁰

beam facing material activation & thermo-mechanical analysis copper (minimum stresses)

cooling system

IFMIF

Accelerator

axial flow in counter-beam direction through annular channel of varying width 30 kg/s, Tin=31 °C, p=3.4 bar

• shielding: water tank (n) & concrete (γ)

May 4-8, 2009

Beam Instrumentation

Objectives

- linac tuning & commissioning
- beam loss minimization
- beam characterization (emit, energy)

Current, Position, Profile monitors Beam loss, Halo, bunchlength monitors

Diagnostics Plate

specific beamline for a set of diags installed at 2 different locations (downstream RFQ and downstream DTL)

Beam Transverse Profilers

high intensity ⇒ non interceptive !
based on residual gas ionization
2 types developed: fluorescence & ionization
R&D started (test à low energy)

the P.A. of the EVEDA phase

Alban Mosnier

IFMIF

EVED/

May 4-8, 2009 PAC'09 \

Vancouver, Canada

page 24

Conclusion

1¹/₂ year after the start of the project, substantial technical updates have been brought in order to optimise the design of the entire linac:

RFQ looks now shorter and less prone to beam loss

- switch from the room temperature DTL to superconducting technology for the high energy portion of the linac
- complete redesign of the RF system, based on conventional RF amplifiers
- The beam dynamics studies have shown that the acceleration of the full beam looks feasible with reasonable emittance growth and beam loss
- The components of the prototype accelerator, starting with the injector, the RFQ and the RF power system, enter now into the manufacturing phase.
- Most of them will be tested in Europe before the shipping, installation, check-out, commissioning and operation at Rokkasho

IFMIF/EVEDA building (Rokkasho)

Foundations of the building at Rokkasho...

Alban Mosnier

May 4-8, 2009 PAC'09 Vancouver, Canada