First Observation of an Electron Beam Emitted from a Diamond Amplified Cathode

Xiangyun Chang, Ilan Ben-Zvi, Andrew Burrill, Jorg Kewisch, Erik Muller, Triveni Rao, John Smedley, Erdong Wang, Yi-Chun Wang, Qiong Wu

• For many years people can either have cathode with:

- High QE, high bunch charge, high average current, low emittance but very short lifetime. <u>Semiconductor cathodes</u>
- Or, long lifetime but low QE, low average current, high emittance. <u>Metallic cathodes</u>
- For the first time we've demonstrated the cathode with:
 - <u>Effectively very high QE</u>
 - <u>Very high bunch charge</u>
 - <u>Very high average current</u>
 - Low emittance
 - <u>Extremely long lifetime.</u>

The Diamond Amplified Photo-cathode (DAP) concept

- I. Primary electrons penetrate the metal coating and generate electron-hole pairs.
- II. Electron-hole pairs are separated by the RF electric field at the right phase.
- III. Secondary electrons drift through diamond.
- IV. Secondary electrons are emitted from the hydrogenated Negative Electron Affinity (NEA) surface.

Transmission Mode Measurement

- I. Single-crystal, high-purity, synthetic diamonds greatly reduce electron and hole trapping in the diamond's bulk.
- II. Gain vs. field does not vary with the primary electron density.
- III. The saturation gain is independent of temperature.
- IV. Diamonds are very robust.
- V. Can handle very large current densities.

First observed beam from diamond amplified cathode

Without focusing

IPri=300nA. HV: 3kV (1.7MV/m in diamond). Freq. = 1kHz, Duty cycle = 0.001

With focusing and reduced primary current

Gain?

Gain of 40 was measured in our current test conditions.

Charge / bunch ?

- >50pC/bunch/0.5mm² (10nC/cm²) from the existing samples and conditions.
- Experiments using x-rays to generate current in diamond have demonstrated an average current of 40mA in a 2mm² area (2A/cm²)
- Current is linear with x-ray power from 100pW to 1W

The emission probability on the hydrogenated surface?

~40% @ 2.7MV/m, 200ns HV pulse width

Other characteristics of the diamond amplified cathode

- **Emission is independent of temperature.** (From LN to 200C in our tests).
- Extremely robust
 - No observable emission degradation after days of exposure to the air.
 - About 50% degradation after exposure to the air for half year!

Summary

- Phosphor screen image of the diamond amplified cathode emission is first time observed.
- At current experimental conditions we've measured:
 - Gain of 40
 - 50pC/0.5mm²/bunch of bunch charge.
 - Emission probability of 40% on hydrogenated surface
- Extremely robust.

Promising methods R&D in progress

- Emittance measurement (estimated to be ~0.1eV).
- Hydrogenation effects
- Other crystal orientations
- Room temperature RF gun test
- Other terminations
- SRF cavity test

Transmission gain

- Improving hydrogenation
- Choose [110] or [111] orientation diamonds
- Li, Na or other alkali elements terminations.

Emission test diagram

Possible field shielding due to dangling bonds and impurities

High voltage is fixed at -500V

The trapping probability near the H-surface?

- Control the emission pulse width and duty cycle accurately with the push-pull circuit
- Measure the integrated emission current. Calculate the emission gain.
- Compare to the data in the transmission mode to find the trapping probability.

Trapping vs. primary current density

Pulse response, 2 MV/m

Pulse response to 1ns FWHM of x-rays (~10keV). Carrier transit time is consistent with expected velocity. •

