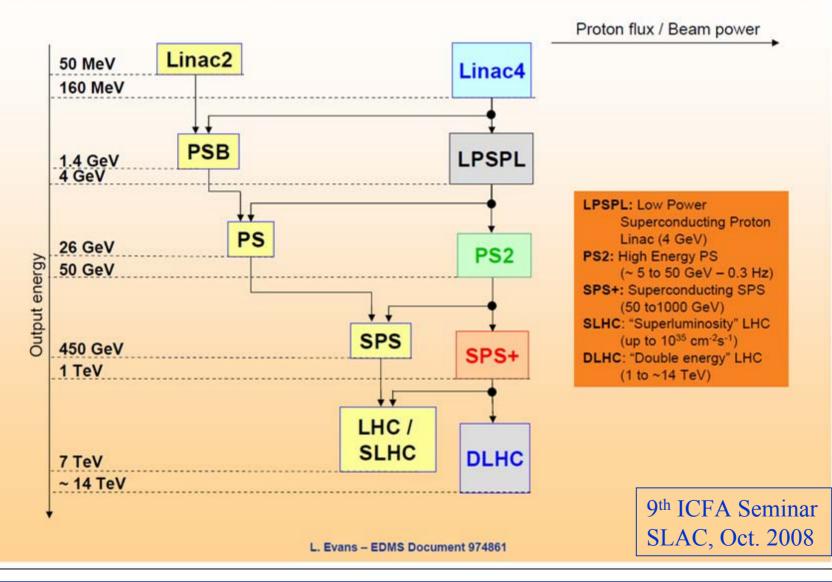
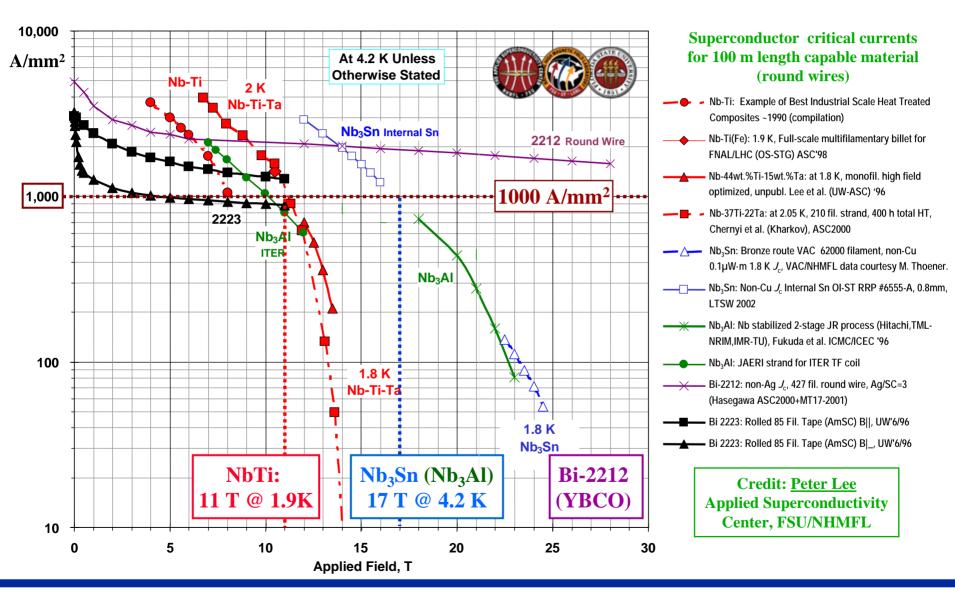
Nb₃Sn Magnets for the LHC Upgrades

GianLuca Sabbi Lawrence Berkeley National Laboratory Superconducting Magnet Program


2009 Particle Accelerator Conference Vancouver, May 5 2009



Upgrade components

Technology Options

Magnet R&D Collaboration Network

- LARP Participants: BNL, FNAL, LBNL + CERN
 (MagSys) Goal: <u>fully qualified Nb₃Sn quadrupoles for SLHC</u>
 CARE Participants: CCLRC, CEA, CERN, CIEMAT, INFN, UT, WTU
 Goal: basic R&D on <u>conductor</u>, insulation, design, quench protection
 EUCARD Participants: CERN, CEA, CNRS, COLUMBUS, DESY, EHTS,
- EUCARD• Participants: CERN, CEA, CNRS, COLUMBUS, DESY, EHTS,(HFM)FZK, INFN, PWR, SOTON, STFC, TUT, UNIGE
 - Goal: <u>high field Nb₃Sn dipole model & very high field (HTS) insert</u>

Inter-Laboratory collaborations on specific topics:

- CERN, RAL, CEA, LBNL on Short Model Coil development
- KEK, NIMS, FNAL on Nb₃Al model coils
- LBNL, KEK on Nb₃Sn coil, structure and assembly methods
- KEK & CERN on Nb₃Al technology for the LHC upgrades
- CERN & CEA, UT, LBNL/LARP on magnet testing
- LBNL & FNAL, BNL, CERN, UT, TAMU on cable development

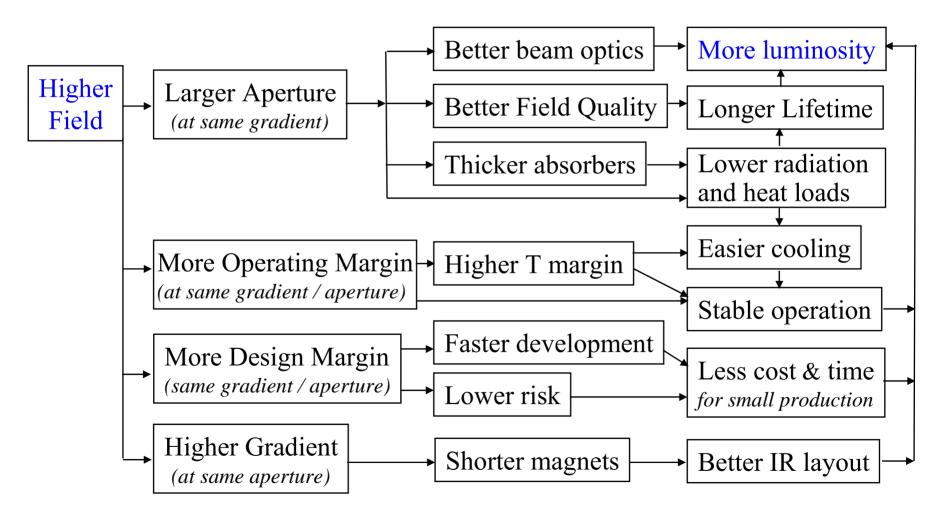
Luminosity Upgrade (SLHC)

Physics goals:

- Improve measurements of new phenomena seen at the LHC
- Detect/search low rate phenomena inaccessible at nominal LHC
- Increase mass range for limits/discovery by ~30%

Implementation in 2 phases:

- Phase 1 ($L= 2.10^{34} \text{ cm}^{-2} \text{sec}^{-1}$): ~2014
- *Phase 2* (*L*=10·10³⁴ cm⁻²sec⁻¹): ~2017


Required accelerator upgrades include new IR magnets:

- Directly increase luminosity through stronger focusing \Rightarrow decrease β^*
- Provide design options for overall system optimization/integration ⇒ collimation, optics, vacuum, cryogenics
- *Be compatible with high luminosity operation* ⇒ *Radiation lifetime, thermal margins*

Major detector upgrades are also required to take full advantage of SLHC

Quadrupole Upgrade Roadmap

High field technology provides design options to maximize luminosity

LARP Magnet Program Components

1. Materials R&D:

LARP

- Strand specification and procurement
- Cable fabrication, insulation and qualification
- Heat treatment optimization
- 2. Technology development with Racetrack Coils:
 - Subscale Quadrupole (SQ)
 - Long Racetrack (LR)
- 3. Cos 2θ Quadrupoles with 90 mm aperture:
 - Technology Quadrupole (TQ)
 - Long Quadrupole (LQ)
- 4. Cos 20 Quadrupoles with 120 mm aperture:
 - High-Field Quadrupole (HQ)
 - Accelerator Quadrupole (QA)

Ongoing

Completed

~80%

GianLuca Sabbi, LBNL

Sub-scale Quadrupole (SQ)

Design features:

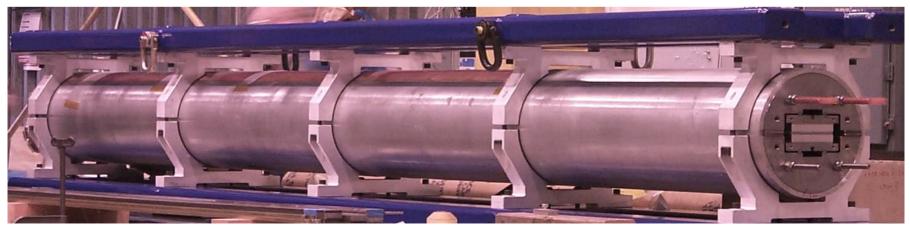
- Based on LBNL "SM" design
- Four racetrack coils, square bore
- Aperture 130 mm, Length 30 cm

<u>R&D Goals</u>:

- Conductor performance verification
- First shell-based quadrupole structure
- FEA models verification
- Quench propagation analysis

Results:

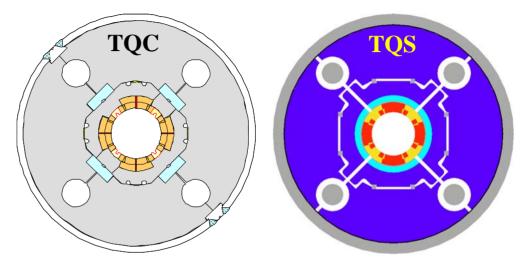
- Two models tested at LBNL & FNAL
- SQ02: 98% of SSL at 4.5K & 1.9K



Long Racetrack (LR)

- Scale up LBNL SM coil and structure: 30 cm to 4 m
- Coil R&D: Cable, handling, reaction, impregnation
- Structure R&D: friction effects, magnet assembly
- BNL: coil fabrication, magnet assembly and test
- *LBNL*: magnet design, structure fabrication/assembly
- Fast training: LRS01 first quench at 84% of SSL
- LRS02 achieved 11.5 T, 96% of short sample limit

Mirror Dipoles and Quadrupoles


- Fermilab dipole models: 1m, 2m and 4m
- First length scale-up of Nb₃Sn $\cos\theta$ coil technology
- Experience applied toward LARP models
- Quadrupole version to test single LARP coils

LARP Technology Quadrupole (TQ)

- Double-layer, shell-type coil
- 90 mm aperture, 1 m length
- Two support structures:
 - TQS (shell based)
 - TQC (collar based)
- <u>Target gradient</u> 200 T/m

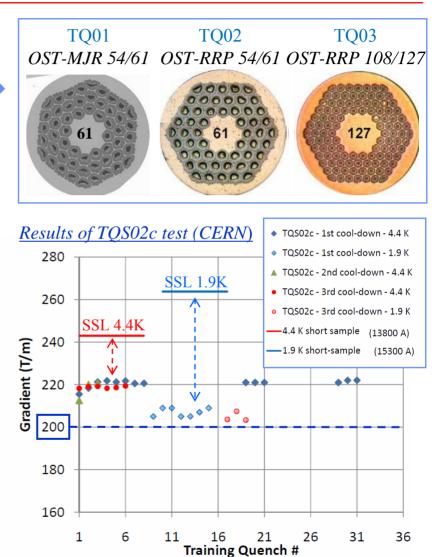
Winding & curing (FNAL - all coils)

Reaction & potting (LBNL - all coils)

TQ Results

Model	First Training at 4.4K			First Training at 1.9K			Highest Quench*	
	G _{Start} (T/m)	G _{Max} (T/m)	G _{max} /G _{ss} (%)	G _{Start} (T/m)	G _{Max} (T/m)	G _{max} /G _{ss} (%)	G _{Max} (T/m)	G _{Max} quench conditions
TQC01a	131	154	72	151	196	87	200	1.9K, <i>100A/</i> s
TQC01b	142	178	86	179	200	90	200	1.9K
TQC02E	177	201	87	198	199	79	201	4.4K
TQC02a	124	157	68	145	164	65	169	1.9K, <i>50 A/</i> s
TQC02b	141	173	85	158	173	78	175	3.6K, 50A/s
TQS01a	180	193	89	n/a	n/a	n/a	200	3.2K
TQS01b	168	182	84	n/a	n/a	n/a	182	4.4K
TQS01c	159	176	81	176	191	82	191	1.9K
TQS02a	182	219	92	214	221	85	222	2.2K
TQS02b	190	200	84	196	205	79	205	1.9K
TQS02c	216	222	93	205	209	80	231	2.7K

Optimized models surpassed the 200 T/m target gradient with >10% margin

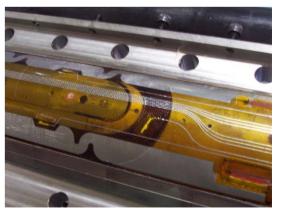

TQ Summary and Next Steps

Achievements:

- Three coil series using different wire design →
- A total of 12 quadrupole models were tested
- More than 30 coils fabricated
- Distributed coil production (FNAL, LBNL)
- Two models assembled and tested at CERN
- Magnetic, mechanical, quench studies
- Optimized models surpassed 220 T/m
- *First quench* >200 *T/m in optimized models*

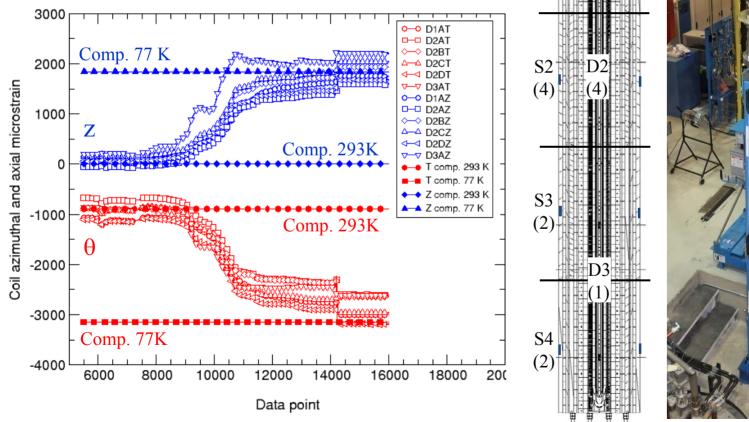
Issues and Next Steps:

- Coil variability resulting in local degradation
- Coil selection required to achieve best results
- Local degradation leads to instability at 1.9K
- Need to improve coil fabrication, wire design


Present focus: Long Quadrupole (LQ)

Scale up of TQ design from 1 m to 3.6 m length

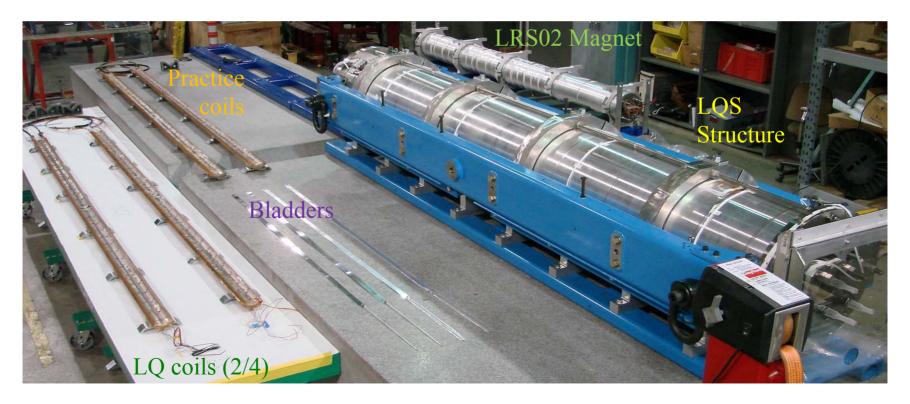
- Coil parts, winding and curing: FNAL
- Coil reaction and potting: FNAL & BNL
- Instrumentation traces, strain gauges: LBNL
- Collar structure fabrication/assembly: FNAL
- Shell structure fabrication/assembly: LBNL
- Magnet test: FNAL



LQSD Mechanical Model

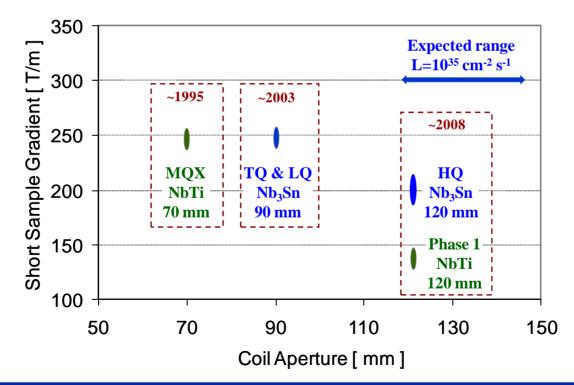
S1 (2)

- LQS assembly w/instrumented Dummy coils
- Verify design calculations, qualify structure
- Practice transport, test setup, cool-down



LQ Status and Plans

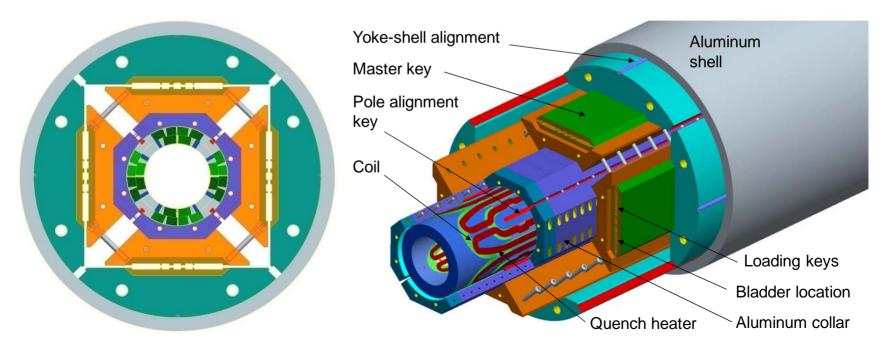
- April 2009 review following cool-down test confirmed LQS Structure Readiness
- Four coils received (2 practice coils); last 2 LQS01 coils to be received in May
- Coil instrumentation & LQS01 assembly in June-July; test in September-October
- Additional coil fabrication and magnet tests are planned for FY10



Aiming at:

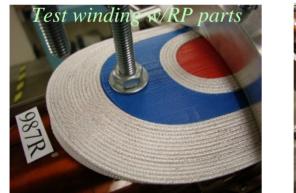
Next Phase: 120 mm Quadrupoles

- IR Studies show *large aperture quads required* for L=10³⁵ cm⁻² sec⁻¹
- Phase 1 (L=2 10³⁴ cm⁻²sec⁻¹) will use NbTi Quads with 120 mm aperture
- The same aperture was chosen for the next series of Nb₃Sn models (HQ)
 - <u>Full qualification</u> based on Phase 1 upgrade specifications



• Providing <u>performance reference</u> for Phase 2 upgrade design

HQ Design Features and Parameters


- Coil peak field of 15.2 T at 219 T/m (1.9K un-degraded short sample)
- 190 MPa coil stress at SSL (150 MPa if preloaded for 180 T/m)
- Stress minimization is primary goal at all design steps (from x-section)
- Coil and yoke designed for small geometric and saturation harmonics
- Full alignment during coil fabrication, magnet assembly and powering

HQ Status and Plans

- <u>Status</u>: Developed 15 mm wide cable, test windings w/RP parts (LBNL)
 - Designed and procured stainless steel coil parts (FNAL)
 - Designed and procured winding/curing tooling (LBNL)
 - Designed reaction tooling (BNL); procurement underway (LBNL)
 - Design and procurement of support structure is underway (LBNL)
 - Winding of the first (practice) coil has started (LBNL)

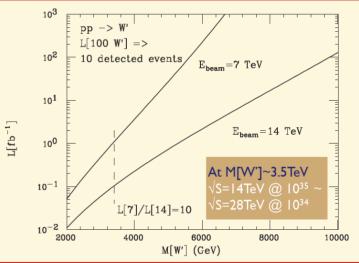
- Plans: First HQ magnet test expected in early 2010
 - Several 1 meter models will be needed to optimize the design
 - Next: 2 meter models (QA) for field quality study/optimization

Energy Upgrade (DLHC)

Motivation for a 14 TeV \rightarrow 28 TeV upgrade:

- Direct enhancement of physics reach by a factor of two in mass
- No major detector upgrades required

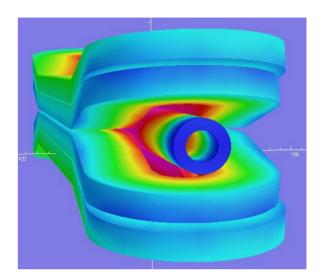
The better upgrade path depends on where and what the new physics is:

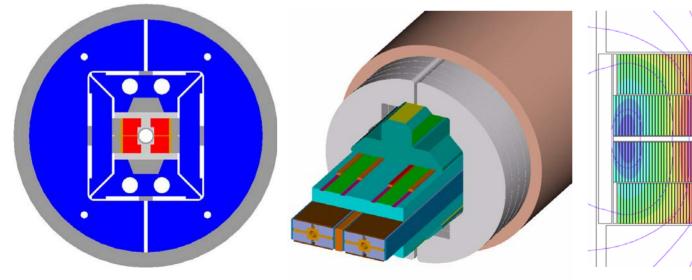

- Low mass: 10xLum better that $2xE_{beam}$
- High mass: increase of E_{beam} is essential

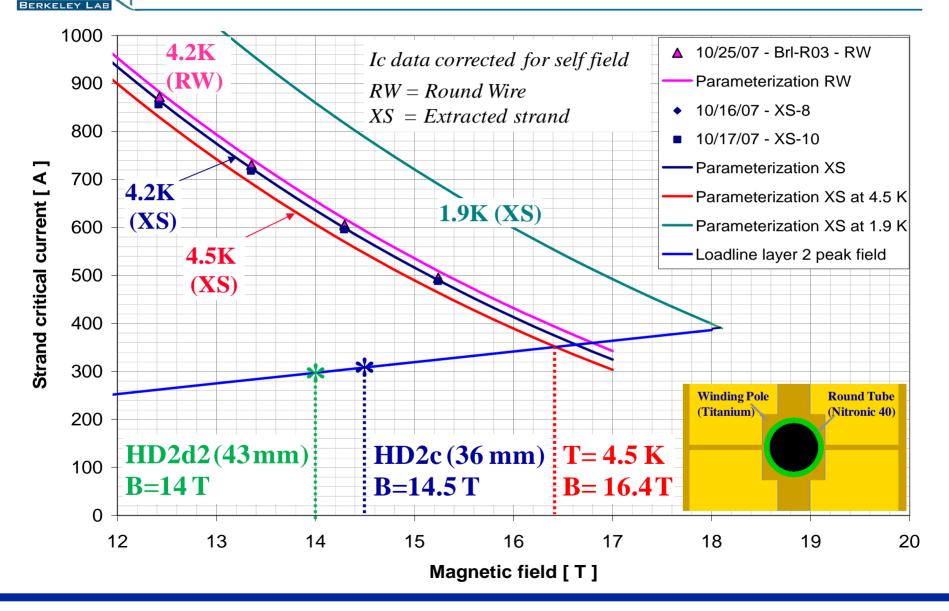
Strong physics interest in energy upgrade:

" $14 \rightarrow 28$ TeV is great, $14 \rightarrow 28$ is even better"

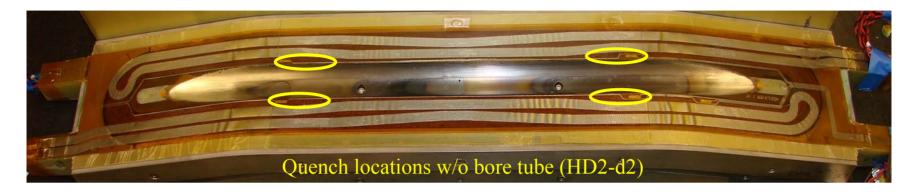
(M. Mangano, SLHC kick-off meeting)

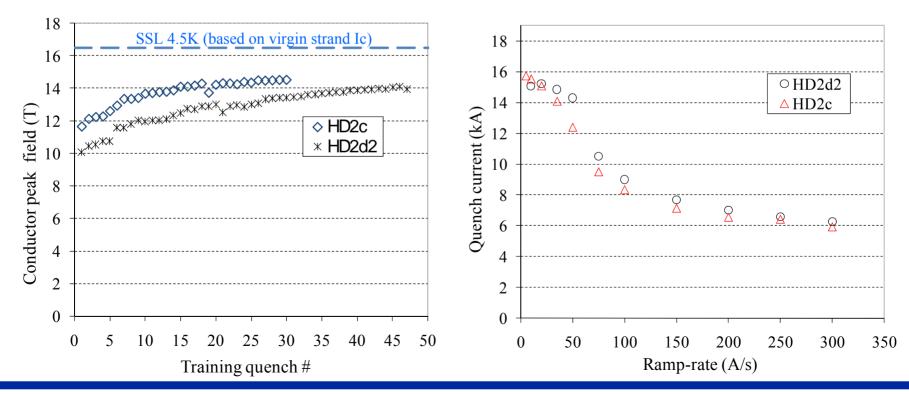



However, energy upgrade is extremely difficult from the accelerator standpoint Many issues, but key R&D challenge is developing the high field dipoles


HD2 Design

- Target dipole field: 15 T
- Target aperture: 40-43 mm
- Coil design: block-dipole with flared ends
- Designed for accelerator field quality
- Suitable for 2-in-1 layout
- Can be used for high field <u>cable testing</u>





HD2 Field and Aperture

HD2 Training & Ramp Rate Quenches

PAC 2009, Vancouver, May 2009

Nb3Sn Magnets for the LHC Upgrades

GianLuca Sabbi, LBNL

Next Steps in Dipole Development

HD2 optimization: 15 T & field quality

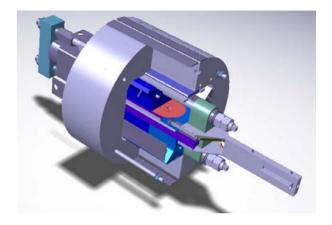
- Eliminate localized quenches in L1 pole turn
- Determine stress limits, optimal pre-load
- Test at 1.9K (requires facility upgrades)
- Field quality optimization:
 - geometric harmonics (tolerances)
 - persistent currents (magnetic shims)
 - end region design (axial shift L1/L2)

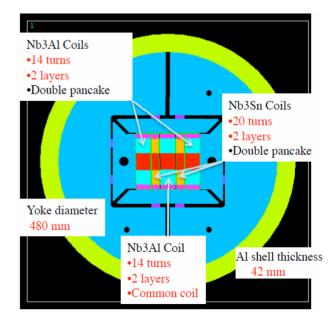
Fabrication of new coils planned for next year

16 T and beyond: HTS technology

- Conductor options: Bi-2212 and YBCO
- Technology development with sub-scale coils
- Fabrication of hybrid Nb₃Sn/HTS dipoles

Magnet Programs in Europe and Japan


1. Short Model Coil (SMC) Program


- CERN, STFC/RAL, CEA and LBNL
- Demonstrate NED cable and insulation
- Gain coil manufacturing experience

2. Hybrid (Nb₃Al) Sub-scale Magnet

- NIMS, KEK: Nb₃Al conductor R&D
- FNAL: Nb₃Al coil fabrication and test
- KEK, LBNL: Mech. structure, Nb₃Sn coil
- KEK: radiation and thermal studies

Efficient start of new R&D efforts by collaboration with ongoing programs

EuCard-WP8 Program

• Work Package 8:

Superconducting High Field Magnets for higher luminosities and energies

- Comprises the following Tasks:
 - Task1: Coordination and Communication.
 - Task 2: Support studies
 - Task 3: High field model
 - Task 4: Very high field dipole insert
 - Task 5: High Tc superconducting link
 - Task 6: Superconducting wiggler for ANKA
 - Task 7: Short period helical superconducting undulator
- WP8 is a CERN, CEA, CNRS, COLUMBUS, DESY, EHTS, FZK, INFN, PWR, SOTON, STFC, TUT, UNIGE collaboration
- Project time span: 2009-2012
- Coordinated with individual Lab programs

Summary

- Strong, efficient collaboration network among magnet programs
- Demonstrated the fundamental aspects of Nb₃Sn technology:
 - Conductor & structure performance, length scale-up
- Complete engineering toolbox and fabrication capabilities
- On track to <u>qualify a 120 mm Nb₃Sn quadrupole for the LHC IR</u>
- Developing 15 T dipoles with accelerator quality features
- Started HTS material & technology development for dipoles >16 T

Acknowledgement

