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Technology Options
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Nb-Ti-Ta Nb-Ti:  Example of Best Industrial Scale Heat Treated

Composites ~1990 (compilation)

Nb-Ti(Fe): 1.9 K, Full-scale multifilamentary billet for
FNAL/LHC (OS-STG) ASC'98

Nb-44wt.%Ti-15wt.%Ta: at 1.8 K, monofil. high field
optimized, unpubl. Lee et al. (UW-ASC) ‘96

Nb-37Ti-22Ta: at 2.05 K, 210 fil. strand, 400 h total HT,
Chernyi et al. (Kharkov), ASC2000

Nb3Sn: Bronze route VAC  62000 filament, non-Cu
0.1µW·m 1.8 K Jc, VAC/NHMFL data courtesy M. Thoener.

Nb3Sn: Non-Cu Jc Internal Sn OI-ST RRP #6555-A, 0.8mm,
LTSW 2002

Nb3Al: Nb stabilized 2-stage JR process (Hitachi,TML-
NRIM,IMR-TU), Fukuda et al. ICMC/ICEC '96

Nb3Al: JAERI strand for ITER TF coil

Bi-2212: non-Ag Jc, 427 fil. round wire, Ag/SC=3
(Hasegawa ASC2000+MT17-2001)

Bi 2223: Rolled 85 Fil. Tape (AmSC) B||, UW'6/96

Bi 2223: Rolled 85 Fil. Tape (AmSC) B|_, UW'6/96

Credit: Peter Lee
Applied Superconductivity

Center, FSU/NHMFL

Superconductor  critical currents 
for 100 m length capable material

(round wires)
A/mm2

NbTi: 
11 T @ 1.9K

Nb3Sn (Nb3Al)
17 T @ 4.2 K

1000 A/mm2

Bi-2212 
(YBCO) 
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Magnet R&D Collaboration Network

• Participants: BNL, FNAL, LBNL + CERN
• Goal: fully qualified Nb3Sn quadrupoles for SLHC

• Participants: CCLRC, CEA, CERN, CIEMAT, INFN, UT, WTU
• Goal: basic R&D on conductor, insulation, design, quench protection 

• Participants: CERN, CEA, CNRS, COLUMBUS, DESY, EHTS, 
FZK, INFN, PWR, SOTON, STFC, TUT, UNIGE 

• Goal: high field Nb3Sn dipole model & very high field (HTS) insert

- CERN, RAL, CEA, LBNL on Short Model Coil development
- KEK, NIMS, FNAL on Nb3Al model coils
- LBNL, KEK on Nb3Sn coil, structure and assembly methods 
- KEK & CERN on Nb3Al technology for the LHC upgrades
- CERN & CEA, UT, LBNL/LARP on magnet testing 
- LBNL & FNAL, BNL, CERN, UT, TAMU on cable development

LARP
(MagSys)

CARE
(NED)

EUCARD
(HFM)

Inter-Laboratory collaborations on specific topics:
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Luminosity Upgrade (SLHC)
Physics goals:

• Improve measurements of new phenomena seen at the LHC
• Detect/search low rate phenomena inaccessible at nominal LHC
• Increase mass range for limits/discovery by ~30%

Implementation in 2 phases:

• Phase 1 (L=  2·1034 cm-2sec-1): ~2014
• Phase 2 (L=10·1034 cm-2sec-1): ~2017

Required accelerator upgrades include new IR magnets:

• Directly increase luminosity through stronger focusing
⇒ decrease β*

• Provide design options for overall system optimization/integration
⇒ collimation, optics, vacuum, cryogenics

• Be compatible with high luminosity operation 
⇒ Radiation lifetime, thermal margins

Major detector upgrades are also required to take full advantage of SLHC
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Quadrupole Upgrade Roadmap

Higher
Field

Larger Aperture
(at same gradient)

Thicker absorbers

More Operating Margin
(at same gradient / aperture)

Longer Lifetime

Lower radiation 
and heat loads

Better Field Quality

Better beam optics

Higher Gradient
(at same aperture) Shorter magnets

Higher T margin

Better IR layout

Stable operation

Easier cooling

More Design Margin
(same gradient / aperture) Lower risk

Faster development
Less cost & time
for small production

More luminosity

High field technology provides design options to maximize luminosity
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LARP Magnet Program Components

1. Materials R&D:
• Strand specification and procurement 
• Cable fabrication, insulation and qualification
• Heat treatment optimization

2. Technology development with Racetrack Coils:
• Subscale Quadrupole (SQ)
• Long Racetrack (LR)

3. Cos 2θ Quadrupoles with 90 mm aperture:
• Technology Quadrupole (TQ)
• Long Quadrupole (LQ)

4. Cos 2θ Quadrupoles with 120 mm aperture:
• High-Field Quadrupole (HQ)
• Accelerator Quadrupole (QA)

Ongoing

Completed

~80%

~10%
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Sub-scale Quadrupole (SQ)

R&D Goals:

• Conductor performance verification
• First shell-based quadrupole structure
• FEA models verification
• Quench propagation analysis

Design features:

• Based on LBNL “SM” design
• Four racetrack coils, square bore
• Aperture 130 mm, Length 30 cm

Results:

• Two models tested at LBNL & FNAL
• SQ02: 98% of SSL at 4.5K & 1.9K
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Long Racetrack (LR)

• Scale up LBNL SM coil and structure: 30 cm to 4 m
• Coil R&D: Cable, handling, reaction, impregnation
• Structure R&D: friction effects, magnet assembly

• BNL: coil fabrication, magnet assembly and test
• LBNL: magnet design, structure fabrication/assembly 

• Fast training: LRS01 first quench at 84% of SSL
• LRS02 achieved 11.5 T, 96% of short sample limit
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Mirror Dipoles and Quadrupoles
• Fermilab dipole models: 1m, 2m and 4m 
• First length scale-up of Nb3Sn cosθ coil technology
• Experience applied toward LARP models
• Quadrupole version to test single LARP coils
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LARP Technology Quadrupole (TQ)

• Double-layer, shell-type coil
• 90 mm aperture, 1 m length
• Two support structures:

- TQS (shell based)
- TQC (collar based)

• Target gradient 200 T/m

Winding & curing (FNAL - all coils) Reaction & potting (LBNL - all coils)

TQC TQS
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TQ Results
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Optimized models surpassed the 200 T/m target gradient with >10% margin



PAC 2009, Vancouver, May 2009 GianLuca Sabbi, LBNLNb3Sn Magnets for the LHC Upgrades

TQ Summary and Next Steps
TQ01

OST-MJR 54/61
TQ02

OST-RRP 54/61
TQ03

OST-RRP 108/127

61

Achievements:

• Three coil series using different wire design 
• A total of 12 quadrupole models were tested
• More than 30 coils fabricated
• Distributed coil production (FNAL, LBNL)
• Two models assembled and tested at CERN
• Magnetic, mechanical, quench studies
• Optimized models surpassed 220 T/m
• First quench >200 T/m in optimized models

Issues and Next Steps:

• Coil variability resulting in local degradation
• Coil selection required to achieve best results
• Local degradation leads to instability at 1.9K
• Need to improve coil fabrication, wire design

SSL 4.4K

SSL 1.9K

Results of TQS02c test (CERN)
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Present focus: Long Quadrupole (LQ) 

Scale up of TQ design from 1 m to 3.6 m length
• Coil parts, winding and curing: FNAL
• Coil reaction and potting: FNAL & BNL
• Instrumentation traces, strain gauges: LBNL
• Collar structure fabrication/assembly: FNAL 
• Shell structure fabrication/assembly: LBNL
• Magnet test: FNAL
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LQSD Mechanical Model

• LQS assembly w/instrumented Dummy coils
• Verify design calculations, qualify structure
• Practice transport, test setup, cool-down 

S1
(2)

D1
(1)

S2
(4)

S3
(2)

S4
(2)

D2
(4)

D3
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Comp. 293K
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LQ Status and Plans
• April 2009 review following cool-down test confirmed LQS Structure Readiness
• Four coils received (2 practice coils); last 2 LQS01 coils to be received in May
• Coil instrumentation & LQS01 assembly in June-July; test in September-October
• Additional coil fabrication and magnet tests are planned for FY10

LQ coils (2/4)

Bladders

LQS 
Structure

LRS02 Magnet

Practice
coils
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Next Phase: 120 mm Quadrupoles

• IR Studies show large aperture quads required for L=1035 cm-2 sec-1 

• Phase 1 (L=2 1034 cm-2sec-1) will use NbTi Quads with 120 mm aperture
• The same aperture was chosen for the next series of Nb3Sn models (HQ)

• Full qualification based on Phase 1 upgrade specifications
• Providing performance reference for Phase 2 upgrade design

Aiming at:

100

150

200

250

300

350

50 70 90 110 130 150
Coil Aperture [ mm ]

S
ho

rt 
S

am
pl

e 
G

ra
di

en
t [

 T
/m

 ]

TQ [8]-[9]
& LQ [10]

HQ

100

150

200

250

300

350

50 70 90 110 130 150
Coil Aperture [ mm ]

S
ho

rt 
S

am
pl

e 
G

ra
di

en
t [

 T
/m

 ]

TQ & LQ
Nb3Sn
90 mm

MQX
NbTi

70 mm

~1995 ~2003

~2008

Phase 1
NbTi

120 mm

HQ
Nb3Sn

120 mm

Expected range 
L=1035 cm-2 s-1



PAC 2009, Vancouver, May 2009 GianLuca Sabbi, LBNLNb3Sn Magnets for the LHC Upgrades

HQ Design Features and Parameters

• Coil peak field of 15.2 T at 219 T/m (1.9K un-degraded short sample)
• 190 MPa coil stress at SSL (150 MPa if preloaded for 180 T/m) 
• Stress minimization is primary goal at all design steps (from x-section) 
• Coil and yoke designed for small geometric and saturation harmonics
• Full alignment during coil fabrication, magnet assembly and powering     

Aluminum collar

Bladder location

Aluminum 
shellMaster key

Loading keys

Yoke-shell alignment 

Pole alignment 
key

Quench heater

Coil
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HQ Status and Plans

Test winding w/RP parts First coil winding – layer 1 pole turn

• Developed 15 mm wide cable, test windings w/RP parts (LBNL)
• Designed and procured stainless steel coil parts (FNAL) 
• Designed and procured winding/curing tooling (LBNL)
• Designed reaction tooling (BNL); procurement underway (LBNL)
• Design and procurement of support structure is underway (LBNL)
• Winding of the first (practice) coil has started (LBNL)

Status:

• First HQ magnet test expected in early 2010
• Several 1 meter models will be needed to optimize the design
• Next: 2 meter models (QA) for field quality study/optimization

Plans:
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Energy Upgrade (DLHC)

Motivation for a 14 TeV → 28 TeV upgrade:

• Direct enhancement of physics reach by a factor of two in mass
• No major detector upgrades required

However, energy upgrade is extremely difficult from the accelerator standpoint 
Many issues, but key R&D challenge is developing the high field dipoles

The better upgrade path depends on where 
and what the new physics is: 

• Low mass: 10xLum better that 2xEbeam
• High mass: increase of Ebeam is essential

Strong physics interest in energy upgrade:

“14→28 TeV is great, 14→28 is even better”
(M. Mangano, SLHC kick-off meeting)

M. Mangano, HHH Workshop, Arcidosso
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HD2 Design

• Target dipole field: 15 T
• Target aperture: 40-43 mm
• Coil design: block-dipole with flared ends
• Designed for accelerator field quality
• Suitable for 2-in-1 layout
• Can be used for high field cable testing
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HD2 Training & Ramp Rate Quenches

Quench locations w/o bore tube (HD2-d2)
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Next Steps in Dipole Development

HD2 optimization: 15 T & field quality

• Eliminate localized quenches in L1 pole turn
• Determine stress limits, optimal pre-load
• Test at 1.9K (requires facility upgrades)
• Field quality optimization:

• geometric harmonics (tolerances) 
• persistent currents (magnetic shims)
• end region design (axial shift L1/L2)

Fabrication of new coils planned for next year

16 T and beyond: HTS technology

• Conductor options: Bi-2212 and YBCO
• Technology development with sub-scale coils
• Fabrication of hybrid Nb3Sn/HTS dipoles

HD2

Bi-2212 cable

Bi-2212 coil
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Magnet Programs in Europe and Japan

Efficient start of new R&D efforts by 
collaboration with ongoing programs

1. Short Model Coil (SMC) Program

• CERN, STFC/RAL, CEA and LBNL
• Demonstrate NED cable and insulation
• Gain coil manufacturing experience

2. Hybrid (Nb3Al) Sub-scale Magnet

• NIMS, KEK: Nb3Al conductor R&D
• FNAL: Nb3Al coil fabrication and test
• KEK, LBNL: Mech. structure, Nb3Sn coil
• KEK: radiation and thermal studies
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EuCard-WP8 Program

• Work Package 8: 
Superconducting High Field Magnets for higher luminosities and energies

• Comprises the following Tasks:
— Task1: Coordination and Communication.
— Task 2: Support studies
— Task 3: High field model
— Task 4: Very high field dipole insert
— Task 5: High Tc superconducting link 
— Task 6: Superconducting wiggler for ANKA
— Task 7: Short period helical superconducting undulator

• WP8 is a CERN, CEA, CNRS, COLUMBUS, DESY, EHTS, FZK, INFN, 
PWR, SOTON, STFC, TUT, UNIGE collaboration

• Project time span: 2009-2012
• Coordinated with individual Lab programs
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Summary

• Strong, efficient collaboration network among magnet programs 
• Demonstrated the fundamental aspects of Nb3Sn technology:

- Conductor & structure performance, length scale-up
• Complete engineering toolbox and fabrication capabilities
• On track to qualify a 120 mm Nb3Sn quadrupole for the LHC IR
• Developing 15 T dipoles with accelerator quality features
• Started HTS material & technology development for dipoles >16 T
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