Muon Capture for a Neutrino Factory (IDS) or a Muon Collider

David Neuffer Cary Yoshikawa

May 2009

>>10²¹ µ-decays /SS /year

International Scoping Study

J. S. Berg et al., "Accelerator Concept for Future Neutrino Facilities", 3 RAL-TR-2007-23, submitted to JINST (2008).

- > Target is immersed in high field solenoid
- > Particles are trapped in Larmor orbits
 - B= 20T -> ~2T
 - Particles with $p_{\perp} < 0.3 B_{sol}R_{sol}/2=0.225GeV/c$ are trapped
 - **π**→μ
 - Focuses both + and particles
 - Drift, Bunch and phase-energy rotation

Neutrino Factory Study 2 Target Concept

- For cooling/acceleration need:
 - P =~200MeV/c, δP/P ~10%, 0.3m bunches

High-frequency Buncher and φ -E Rotator μ

- > Drift ($\pi \rightarrow \mu$)
- > "Adiabatically" bunch beam first (weak 320 to 240 MHz rf)
- $ightarrow \Phi$ -E rotate bunches align bunches to ~equal energies

$N_B = 10$ example

- > Drift from target ~60m
 - Beam lengthens
- > Buncher (~30m)
 - N=10
 - P₀=280MeV/c, P_N=154MeV/c
 - 330 \rightarrow 235 MHz
 - V'= 0→10 MV/m
- > Rotator (~35m)
 - N=10.08 continue to bunch
 - accelerate/decelerate bunches
 - 235 \rightarrow 202 MHz,V'= 10 MV/m
- > Cooler (~80m)
 - 201.25 MHz, ASOL lattice
 - 15MV/m in rf cavities
 - LiH or H₂ cooling
- \succ Captures both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$

Details of ISS implementation

- Drift -110.7m
- > Bunch -51m
 - $P_0=280$, $P_{18}=154$ MeV/c $\delta N_V = 18$
 - 12 rf freq. (5 to 10 MV/m)
 - 330 MHz → 230MHz
- ▷ φ-E Rotate 54m
- \succ 15 rf freq. 230→ 202 MHz
 - δN_V = 18.032
 - 12MV/m
- > Match and cool (80m)

- \succ Captures both $\mu^{\scriptscriptstyle +}$ and $\mu^{\scriptscriptstyle -}$
 - ~0.1 μ/(10 GeV p)

ISS Study Beam acceptance

- Method captures large initial longitudinal phase space
 - with relatively small dilution
- Initial Beam
 - $P_{\pi \rightarrow \mu}$ 75 to ~600 MeV/c,
 - ∆P=±250MeV/c
 - $\sigma_{\text{bunch}} = \sim 1 \text{m rms}$

Captured beam

- 50+ bunches (~80m long)
- > Accepted bunches are
 - $\Delta P = \pm 20 MeV/c$
 - $\sigma_{\text{bunch}} = \sim 0.3 \text{m}$
- > 0.2 µ⁺/24GeV p both µ⁺ and µ⁻

-30.00

-30

> Reduce drift, buncher, rotator to get shorter bunch train:

40m

Target

Drift

57 m

Buncher

31.5 m

Rf in magnetic fields?

Front end rf options

- Lower-Gradient baseline
 - 4 to 8MV/m ?
 - longer system

Cavity changes

- Open cell rf?
- coatings/materials? Be, Al, ALD
- Gas-filled cavities ?
 - Suppresses breakdown
 - electrons/ions ?
- Focusing Variants
 - Lower B-field across cavities
 - "alternating solenoid"
- > "magnetically insulated" cavity
 - fields similar to alternating solenoid
 - Beam dynamics OK

- > High frequency (bunch, phase rotate, cooler) is well suited to neutrino factory scenarios
 - Study 2B/IDS designs
 - Produces trains of μ^+ and μ^- bunches for acceleration and storage (~ 80m trains)
 - Latest versions provide shorter trains (30 to 50m)
- > Can use high-frequency capture to obtain bunch train for v-Factory $\rightarrow \mu^+-\mu^-$ collider
 - (~10 to 14 bunches long at 200MHz)
 - Recombine after cooling for collider mode

> Questions

- ~12 MV/m at $B \cong 2T$ and $f \cong 200MHz$ OK?
- Is ~12 bunches OK for Collider scenario?

Supplemental Slides

Need to develop best design for IDS μ

