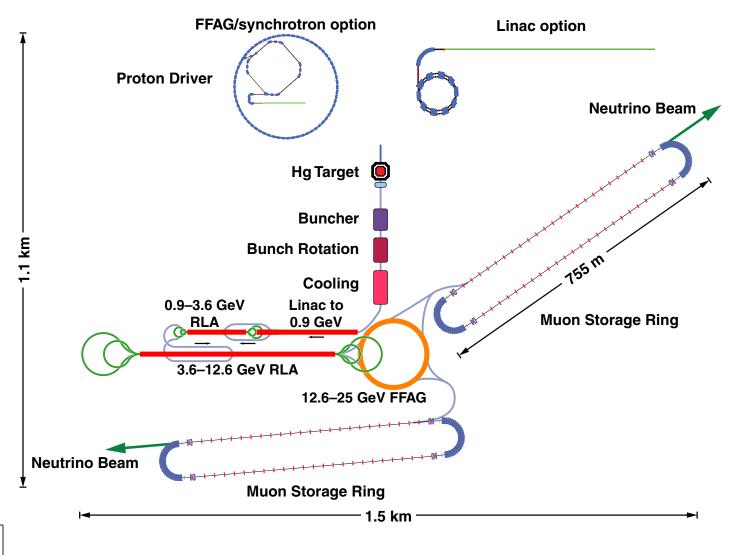
FFAG Designs for the International Design Study for the Neutrino Factory

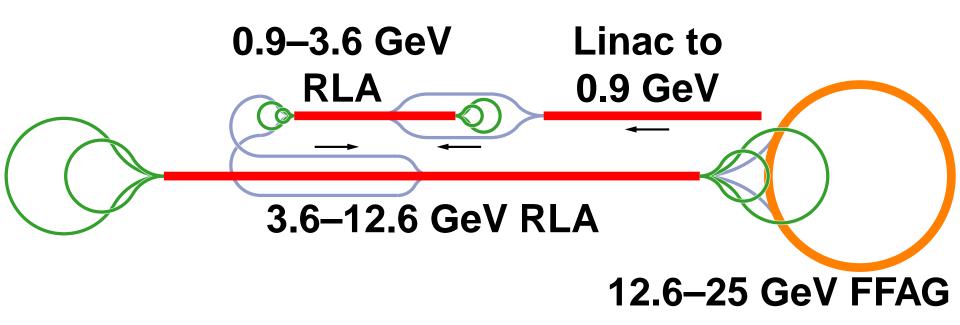
J. Scott Berg, Brookhaven National Laboratory Shinji Machida, STFC/RAL PAC09 05 May 2009

IDS-NF Overview


- Produce muons
- Reduce beam to manageable size
- Accelerate to 25 GeV
- Store and allow to decay toward far detector
 50 Hz
- $\odot 10^{21}$ decays per year toward detectors
- See poster WE6RFP067, Wed. afternoon

IDS-NF Accelerator Complex

IDS-NF Acceleration Scenario

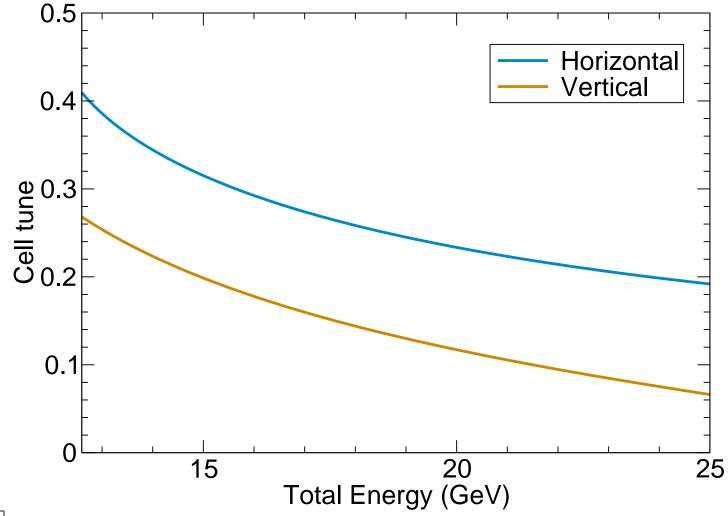

 Reduce cost, maximize passes through RF Recirculating linear accelerator Arcs steer beam back to linac Different energy for each arc Switchyard limits number of passes ○ FFAG: single arc for all passes □ No switchyard, more turns Most efficient at high energy

IDS-NF Acceleration Scenario

FFAG Introduction

- Fixed Field Alternating Gradient accelerator
 Large energy range (factor of 2 or more) with single arc
- Fixed Field: don't ramp magnets
- Alternating Gradient: reduced aperture (compared to cyclotron)

FFAG Introduction Scaling and Non-Scaling

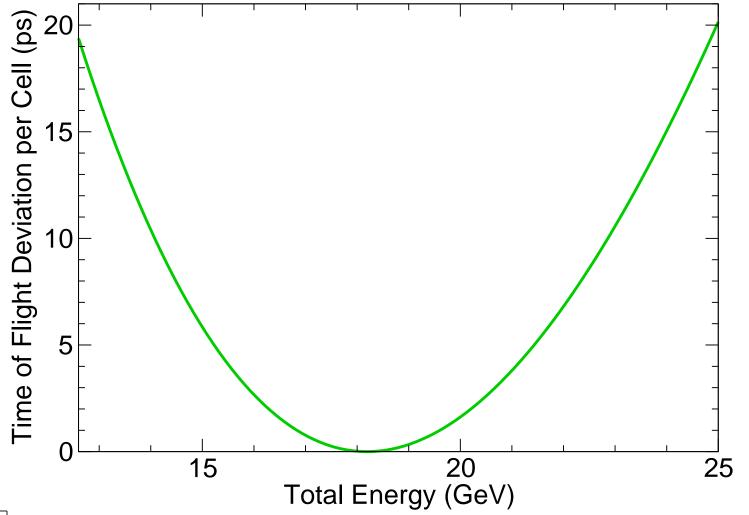


- Original FFAG: scaling
 - Tunes fixed, dynamics independent of energy
 Nonlinear magnets, but good dynamic aperture
- Linear non-scaling FFAG (chosen for IDS-NF)
 Apertures smaller than scaling
 Less time variation with energy than scaling
 Tunes vary with energy
 Linear magnets give large dynamic aperture

Tune of Variation with Energy

IDS-NF FFAG Requirements

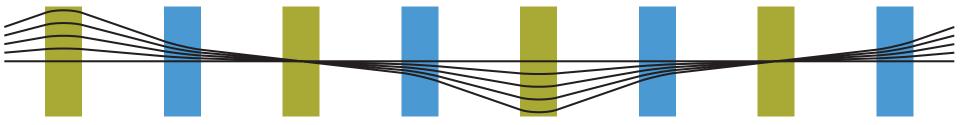
- Accelerate from 12.6 to 25 GeV
- O 30 mm normalized transverse emittance (full)
- 0150 mm normalized longitudinal emittance (full)
- ○201.25 MHz superconducting RF
 - Frequency can't be varied
- Rapid acceleration


FFAG Design

 Simple, repetitive lattice (FODO, doublet, triplet) High periodicity: less systematic resonances • Time of flight depends on energy Limits number of turns: RF synchronization Less time variation, more turns Reducing time variation: reduce dispersion Isochronous within energy range Short drifts, combined function magnets

Time of Flight Variation with Energy

Time of Flight and Transverse Amplitude


- Time of flight depends on transverse amplitude
 - Longitudinal motion depends on transverse amplitude
 - Effective longitudinal emittance blowup

Exists due to chromaticity

- \Box Hamiltonian term $(\boldsymbol{\xi} \cdot \boldsymbol{J})\delta$
- Large transverse emittance
- Reduced by increasing average RF gradient
 - Fill all available drifts with RF

Time of Flight Variation with Transverse Amplitude

IDS-NF FFAG Optimization

Insert cavities in every drift

□ Time vs. transverse amplitude

One or two RF cells per lattice cell

Two: more cost, less time vs. amplitude

Optimize ring circumference

Longer ring increases RF cost

Shorter ring increases magnet cost

Larger aperture, higher fields

IDS-NF FFAG Parameters

DOKHAVEN

Configuration FDC FDFC FCDC FDCC FDFCC

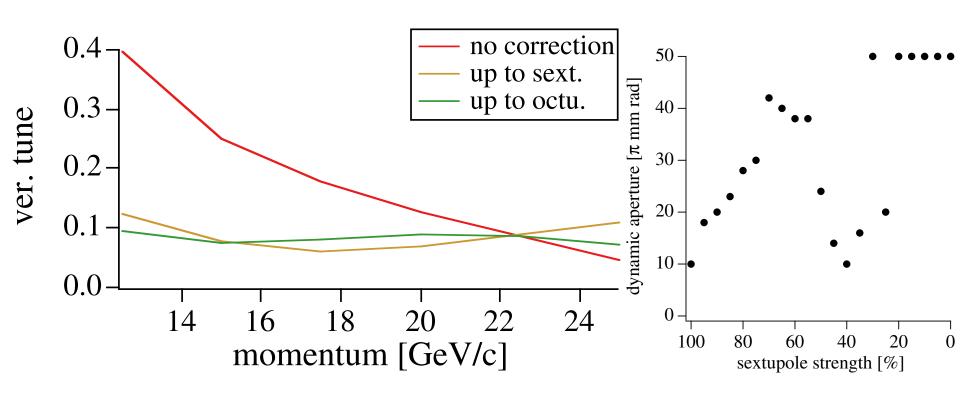
Cells	77	70	62	62	55
D radius (mm)	77	92	95	102	125
D field (T)	8.1	7.7	7.6	8.3	7.3
F radius (mm)	140	122	207	203	167
F field (T)	4.0	4.2	3.4	3.1	3.9
RF (MV)	903	814	1526	1424	1246
turns	14.6	16.2	8.7	9.3	10.6
Length (m)	426	422	462	467	445
Cost (A.U.)	134	144	176	175	181

Chromaticity Correction

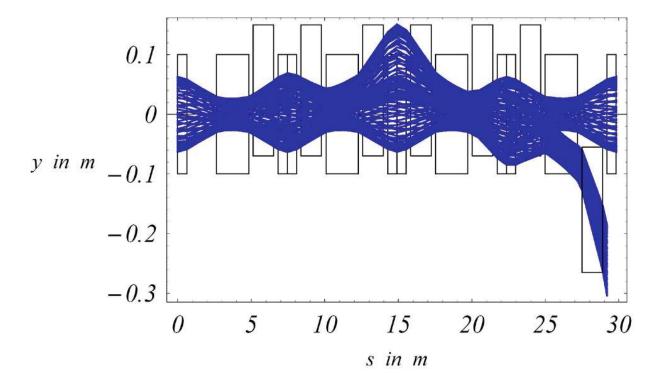
Reduce chromaticity

- Reduce time of flight dependence on transverse amplitude
- Reduce longitudinal distortion
- Nonlinearity hurts dynamic aperture
- Increases magnet apertures and thus cost

Chromaticity Correction


- Add sextupole component to magnets
- Chromaticity can be almost fully corrected
 - Poor dynamic aperture
 - Partial correction: better dynamic aperture
- Allows insertions with long drifts
 - Eases injection/extraction

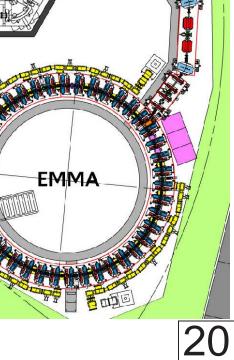
Chromaticity Correction



Injection and Extraction

Most challenging aspect of FFAGs

See poster WE6PFP092, Wednesday afternoon



EMMA, the World's First Non-Scaling FFAG Accelerator

- Experiment to study beam dynamics in linear non-scaling FFAGs
- Invited talk
 WE4PBI01,
 Wednesday 16:30

ALICE

Next Steps

- Modify designs to leave more space for injection/extraction
- Study effects of symmetry breaking required for injection/extraction
- Choose optimal chromaticity correction
 - Dynamic aperture and cost considerations
 - Study with errors
- Detailed tracking studies

