Performance and Capabilities of Upgraded

High Intensity Gamma-ray Source (HIGS) at Duke University

Y. K. Wu

Department of Physics, Duke University May 7, 2009

Acknowledgment:

M. Busch, M. Emanian, J. Faircloth, S. Hartman, J. Li, S. Mikhailov, V. Popov, G. Swift, P. Wang, P. Wallace, C. Howell (TUNL and DFELL)

Work supported by U.S. Grant and Contract:

DOE DE-FG02-01ER41175 and AFOSR MFELFA9550-04-01-0086 DFELL, Duke University PAC 2009, Vancouver, Canada, May 4 - 8, 2009

Outline

High Intensity Gamma-ray Source (HIGS)

- Duke FEL Lab Accelerator Facility Overview
- HIGS Operation
 - Operation Principle
 - Energy Tuning Range
 - Performance and Capabilities

Critical Development for HIGS Since 2007

- Full-energy, top-off booster injector
- Helical OK-5 FEL (two wigglers)
- Bunch-by-bunch Longitudinal Feedback System
- In -cavity, Water-cooled Aperture System

Future Development for HIGS

- Flux Front
- Energy Front

HIGS Capabilities for User Programs in 2009

Parameter	Value		Comments Comments
E-beam Configuration E-beam current [mA]	Symmetric two-bunch beam 50 - 100		High flux configuration
Gamma-ray Energy [MeV]	1 – 100		with mirrors 1064 to 190 nm Available with existing hardware Extending wiggler current to 3.5 kA
(a) No-loss mode	Total flux [γ/s]	Collimated flux (ΔE/E=3%) [γ/s]	Both Horizontal and Circular Polarizations
$1 - 3 MeV^{(a)}$	$1 \times 10^8 - 1 \times 10^9$	$5 \times 10^6 - 5 \times 10^7$	
3 – 5 MeV	6 x 10 ⁸ - 2 x 10 ⁹	3 x 10 ⁷ - 1 x 10 ⁸	
5 – 10 MeV	$4 \ge 10^8 - 2 \ge 10^9$	$2 \times 10^7 - 1 \times 10^8$	
10 – 20 MeV	$1 \ge 10^9 - 2 \ge 10^9$	5 x 10 ⁷ – 1 x 10 ⁸	
(b) Loss mode	Total flux [y/s]	Collimated flux	
		(ΔE/E~3%) [γ/s]	To extend mirror lifetime,
21 – 45 MeV	$> 2 \times 10^{8}$ (b)	> 1 x 10 ⁷	circular polarization is preferred
45–65 MeV	$\sim 2 \times 10^{8}$ (b)	~ 1 x 10 ⁷	240 nm mirrors and wiggler @3.5 kA
66 – 100 MeV	$1-2 \ge 10^{8} $ (b) (c)	0.5 – 1 x 10 ⁷	190 nm mirrors and wiggler @3.5 kA

^(a) With present configuration of OK-5 wigglers separated by 21 m, the circular polarization is about ¹/₂ the values here.

^(b) The flux in loss mode is mainly limited by injection rate.

^(c) Thermal stability of FEL mirror may limit the maximum amount of current can be used in producing FEL lasing, thus flux.

Highest Flux (2009): ~ 10¹⁰ γ/s @ 11 MeV

H. R. Weller *et al.*, "Research Opportunities at the Upgraded HIγS Facility," Prog. Part. Nucl. Phys. Vol 62, Issue 1, p. 257-303 (2009).

DFELL, Duke University

PAC 2009, Vancouver, Canada, May 4 - 8, 2009 Y.K.Wu

High Energy-Resolution Operation

o u I I

Asymmetric Bunch Pattern: one large (lasing) and one small (non-lasing)

Improving stability of gamma energy resolution and increase flux

- Develop a reliable way to measure bunch pattern, and
- An automatic injection scheme to maintain charge distribution

DFELL, Duke University PAC 2009, Vancouver, Canada, May 4 - 8, 2009

WHigh Resolution with Asymmetric Two-bunch Operation 🔯 🗖

Beam Diagnostics

- Live Spectrum Monitor
- Live bunch length monitors

DFELL, Duke University PAC 2009, Vancouver, Canada, May 4 - 8, 2009 Y. K. Wu

High Resolution with Asymmetric Two-bunch Operation

Beam Diagnostics

- Live Spectrum Monitor
- Live bunch length monitors

DFELL, Duke University

PAC 2009, Vancouver, Canada, May 4 - 8, 2009

W High Resolution with Asymmetric Two-bunch Operation

Beam Diagnostics

- Live Spectrum Monitor
- Live bunch length monitors

DFELL, Duke University

o u I I

PAC 2009, Vancouver, Canada, May 4 - 8, 2009

DFELL, Duke University PAC 2009, Vancouver, Canada, May 4 - 8, 2009 Y. K. Wu

In-Cavity, Water-cooled Apertures

In-cavity, Water-cooled apertures for Harmonic Radiation Control

Harmonic Power Reduction: about one order of magnitude

Commissioned for User Operation (Sep., 2008)Part of Ph.D. thesis work of Senlin HuangDFELL, Duke UniversityPAC 2009, Vancouver, Canada, May 4 - 8, 2009Y. K. Wu

Commissioned for User Operation (Sep., 2008)Part of Ph.D. thesis work of Senlin HuangDFELL, Duke UniversityPAC 2009, Vancouver, Canada, May 4 - 8, 2009Y.K. Wu

Correcting Mirror Deformation

T:2.51;S:4.43;B:2.51;N:4.45 [mm];lb=31.21 mA

DFELL, Duke University PAC 2009, Vancouver, Canada, May 4 - 8, 2009 Y. K. Wu

- Flux Front (1 20 MeV)
 - Higher Flux with Linear and Circular Polarization
 - Improved High-resolution Operation
- Energy Front
 - Pion threshold energy of 150 160 MeV

Switch-yard for OK-4 and OK-5 Wigglers

Photon-pion physics

• 150 – 160 MeV operation with the OK-5 FEL lasing around 150 ma

PAC 2009, Vancouver, Canada, May 4 - 8, 2009 **DFELL, Duke University**

Switch-yard for OK-4 and OK-5 Wigglers

Photon-pion physics

• 150 – 160 MeV operation with the OK-5 FEL lasing around 150 m

Summary

- Upgraded High Intensity Gamma-ray Source (HIGS) in 2009
 - Capabilities
 - Energy Tuning: 1 100 MeV
 - Maximum Total Flux: ~ 10¹⁰ γ/s around 5 10 MeV
 - Maximum Spectrum Flux: : ~ 10³ γ/s/eV around 5 10 MeV
 - High Energy Resolution: 0.8% (< = 5 MeV)
 - Polarization: linear, and switchable left- and right-circular
- Future Development
 - Higher Flux Operation: 10¹¹ γ/s total below 20 MeV
 - Higher Gamma-beam Energy: 100 160 MeV for photon-pion physics research

In-cavity, Water-cooled apertures for Harmonic Radiation Control

Harmonic Power Reduction: about two order of magnitude

Commissioned for User Operation (Sep., 2008)Part of Ph.D. thesis work of Senlin HuangDFELL, Duke UniversityPAC 2009, Vancouver, Canada, May 4 - 8, 2009Y. K. Wu

