## Major Upgrade Activity of the PLS in PAL: PLS-II

S. H. Nam on behalf of the PAL staff

#### Pohang Accelerator Laboratory (PAL) POSTECH

May 7, 2009

Particle Accelerator Conference 2009 Vancouver, British Columbia, Canada



## **PAL: Geology**



- Total Land Area : 651,031 m<sup>2</sup>
- Total Building Area: 41,846 m<sup>2</sup>
- Number of Building: 15







### I. PLS

| Project started                 | Apr. 1 1988  |
|---------------------------------|--------------|
| Ground-breaking                 | Apr. 1 1991  |
| 2-GeV Linac commissioning       | June 30 1994 |
| Storage ring commissioning      | Dec. 24 1994 |
| User's service started          | Sept. 1 1995 |
| <u>1st PLS Upgrade Complete</u> | Nov. 1 2002  |
| ✓ Energy ramping to 2.5 GeV     | Sept. 1 2000 |
| ✓ 2.5-GeV injection             | Nov. 1 2002  |
|                                 |              |

### II. 2<sup>nd</sup> Major Upgrade of the PLS (PLS-II)

| • 3.0 GeV PLS-II Upgrade begin         | Jan. | 2009 |
|----------------------------------------|------|------|
| <u>3.0 GeV PLS-II Upgrade Complete</u> | Dec. | 2011 |

# Major Goal of the PLS-II Upgrade

| Item                         | PLS                     | PLS-II            |
|------------------------------|-------------------------|-------------------|
| Increase Energy              | 2.5 GeV                 | 3.0 GeV           |
| Lower Emittance              | 18.9 nm∙rad             | 5.6 nm•rad        |
| Increase Stored Beam Current | 200 mA                  | 400 mA            |
| Increase No. of IDs          | 10                      | >20               |
| Increase Brightness          | $\sim 2 \times 10^{18}$ | ~10 <sup>20</sup> |
| Change Lattice Type          | TBA                     | DBA               |
| Change Operation Mode        | Decay                   | Top-up            |



# PLS-II Project Summary

- Project Period: 3 years (2009 2011)
  Total Budget: US 100 M\$
- > Yearly Budget: in US M (1U\$ = 1000 Won)

| Item         | Year |       |      | Total |
|--------------|------|-------|------|-------|
|              | 2009 | 2010  | 2011 |       |
| Storage Ring | 15.1 | 25.11 | 9.42 | 49.63 |
| Linac        | 8.57 | 5.97  | 1.6  | 16.14 |
| Beamline     | 5.46 | 11.82 | 6.62 | 23.9  |
| Utility      | 0.87 | 3.5   | 5.96 | 10.33 |
| Total        | 30.0 | 46.4  | 23.6 | 100.0 |

# Linac & BTL





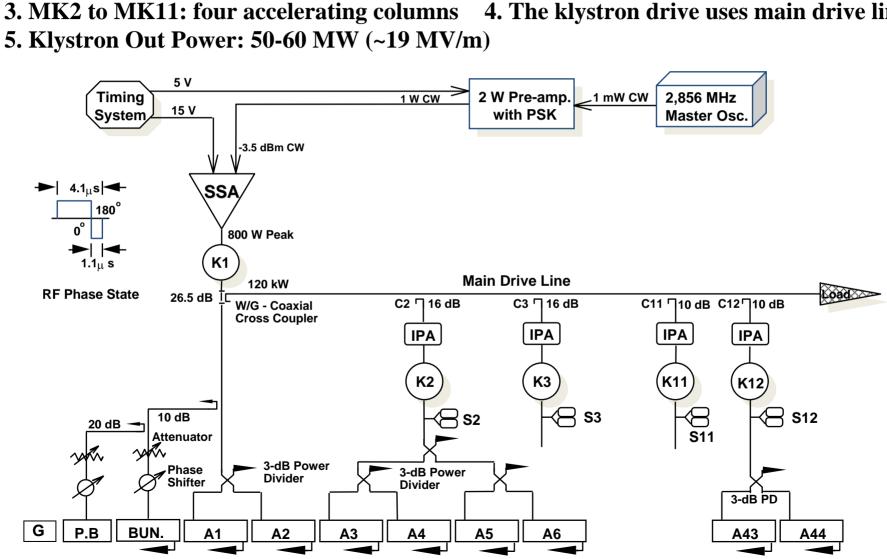
- Thermionic Electron Gun
- 12 Pulse Modulators (200MW)
- 12 Klystrons (80 MW, 4us)
- 11 Energy Doublers (g=1.6)
- 44 Accelerating Sections

## **Injector LINAC**

- Length = 160m
- 2.5GeV, full energy injection
- 2,856 MHz (S-band)
- 10Hz, 1.5 ns, 1A pulsed beam



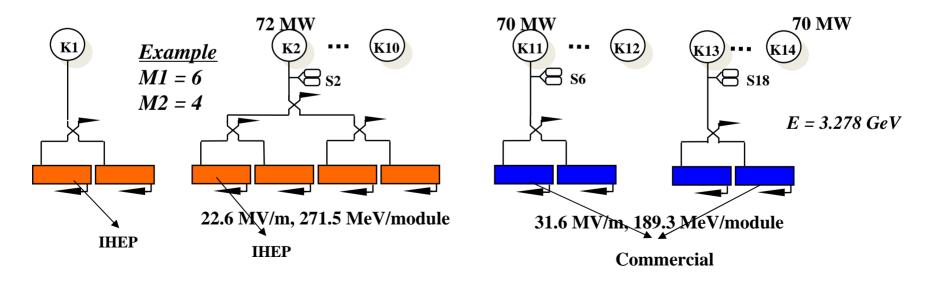
## **Performance Upgrade Goal of the PLS-II Linac**


|                                      | PLS               | PLS-II                          |
|--------------------------------------|-------------------|---------------------------------|
| Energy                               | 2.5 GeV           | 3 GeV                           |
| <b>Repetition Rate</b>               | 10 Hz             | 10 - 30 Hz                      |
| <b>Energy Stability</b>              | 0.5% rms          | 0.1% rms                        |
| <b>Energy Spread</b>                 | 0.6% rms          | < 0.2% rms                      |
| Emittance<br>(normalized, rms)       | 150 mm mrad       | < 20 mm mrad                    |
| Gun Pulse Length                     | 1.5 ns FWHM       | < 1 ns FWHM<br>or 0.5 us        |
| Klystron Power<br>(Operating Levels) | 50 – 60 MW        | $70-80 \mathrm{MW}$             |
| SLED Gain                            | 1.5 – 1.6         | 1.6 - 1.7                       |
| Diagnostics                          | BCMs, BASs, BPRMs | + BPMs, Slits,<br>Wire Scanners |

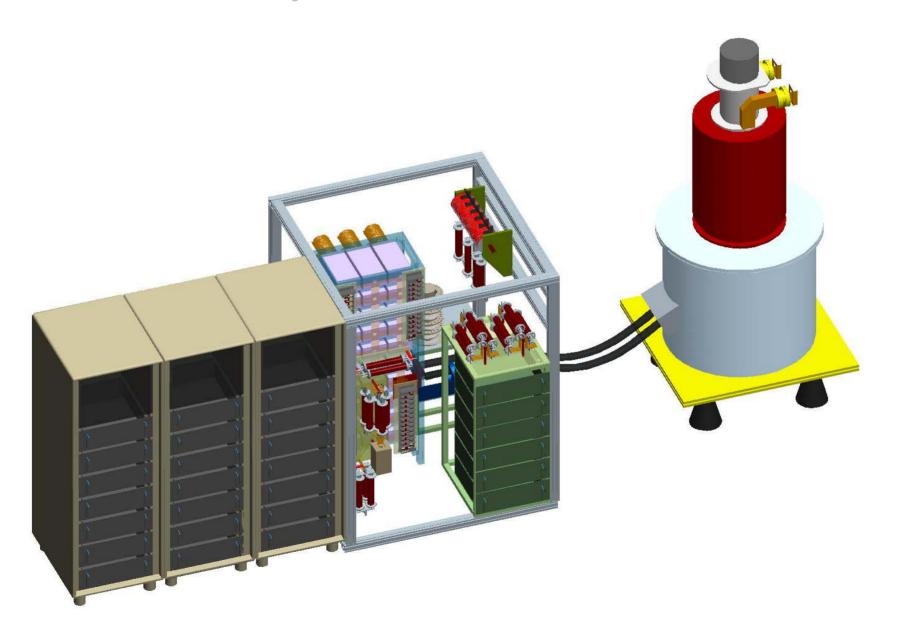
## PLS-II Gun: Comparison of Various Gun Systems

|                   | PLS         | PL                                                                                      | S-II                                                                                                                                 |
|-------------------|-------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Number of Guns    | Single Gun  | Single Gun<br>with fast replacement                                                     | Dual Gun                                                                                                                             |
| Beam Energy       | 80 keV      | 80 keV                                                                                  | 180 keV                                                                                                                              |
| Beam Current      | 1 A peak    | 1 A peak                                                                                | 1 A peak                                                                                                                             |
| Pulse Length      | 1.5 ns FWHM | < 1 ns FWHM<br>or 0.5 – 1 us                                                            | < 1 ns FWHM<br>or 0.5 – 1 us                                                                                                         |
| HVPS Type         | DC          | DC                                                                                      | Pulse                                                                                                                                |
| Beam Transmission | 80%         | 60%                                                                                     | 70%                                                                                                                                  |
| Pro & Cons        |             | <ol> <li>Compact &amp; Economic</li> <li>Good for Short Pulse<br/>Generation</li> </ol> | <ol> <li>On-line Switching between<br/>Guns is Possible</li> <li>Large Pulse Lengthening</li> <li>Complex &amp; Expensive</li> </ol> |

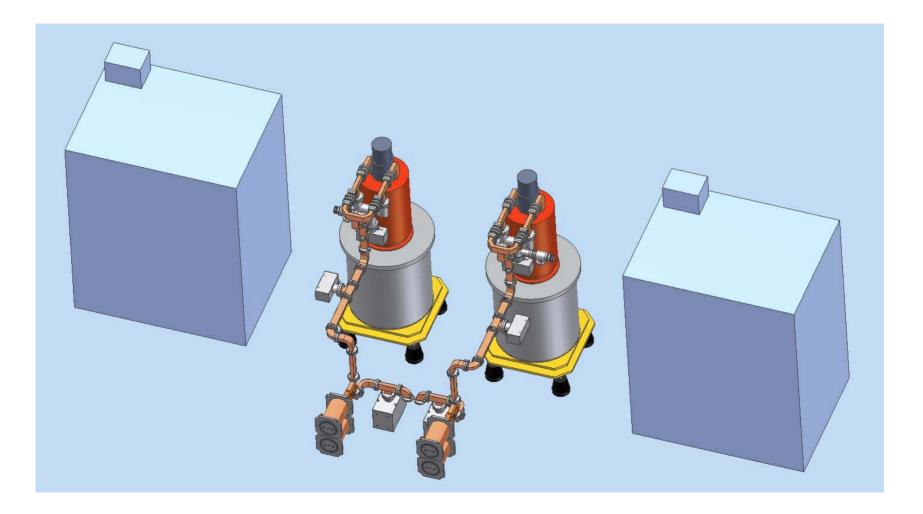
## **MW System: Current 2.5 GeV Linac**


1. 12 klystron&modulator systems




2. MK01&12: two accelerating columns 4. The klystron drive uses main drive line.

## Linac MW Layout (2.5GeV → 3.0GeV Energy Upgrade)


|                         | MK1<br>1(set)   | MK2 - MK10<br>9(set) | MK11 – MK14<br>4(set) |
|-------------------------|-----------------|----------------------|-----------------------|
| Klystron output power   | 60 MW           | 72 MW                | 70 MW                 |
| Model                   | <b>SLAC5045</b> | Toshib               | a E3712               |
| Number of A/C           | 2               | 36                   | 8                     |
| Type of A/C             |                 | IHEP                 | Commercial            |
| Av. energy gain of SLED | NA ~            |                      | 1.6                   |
| Gradient of A/C         |                 | 22.6 MV/m            | 31.6 MV/m             |



# Klystron-Modulator



## Waveguide Windows and SLEDs in the Gallery

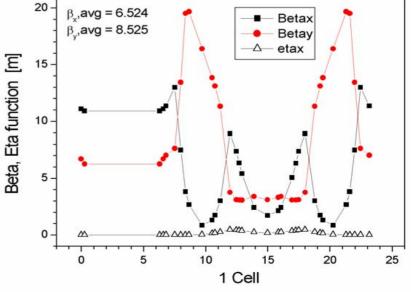


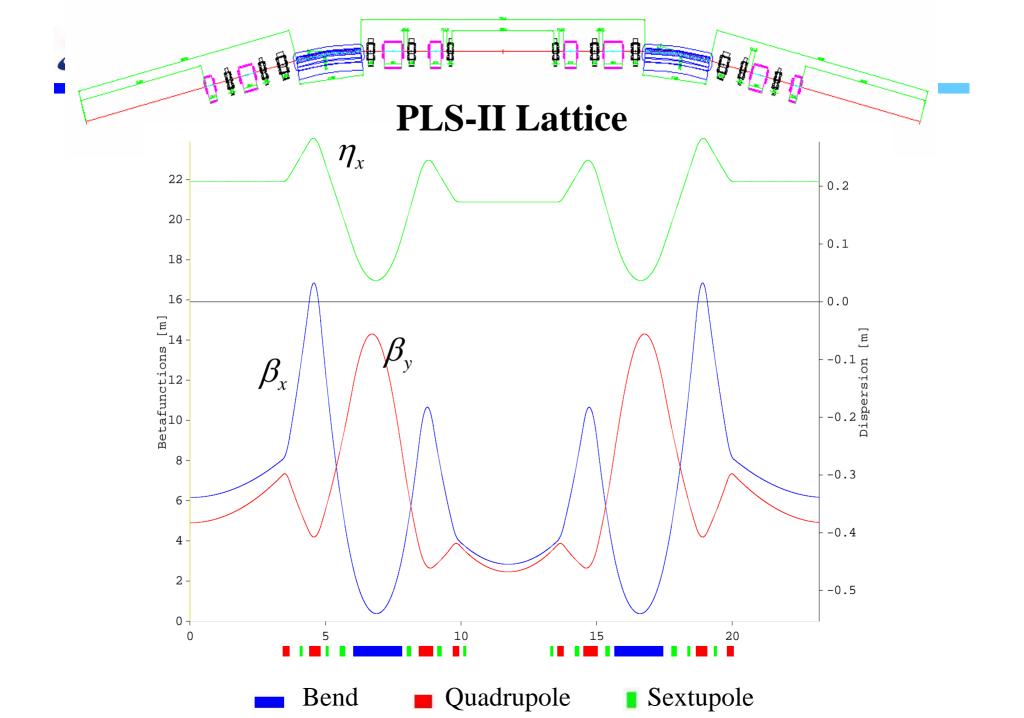
## Linac/BTL Beam Instrument of the PLS

|                     |        | No.      | Occupier                         |                            |     |               |
|---------------------|--------|----------|----------------------------------|----------------------------|-----|---------------|
| Instrument          | Linac  | BTL(BAS) | Operation                        | Remark                     |     |               |
| BCM                 | 7      | 5(1)     | 0                                | ОК                         |     |               |
| BPRM                | 4      | 5(1)     | 0                                | ОК                         |     |               |
| BLM                 | 42     | 12       | 0                                | Need controller            |     |               |
| BPM                 | 13 13( | 13(1)    | Linac pickup<br>install(~2009.8) | Need DAQ                   |     |               |
|                     |        |          | ( )                              |                            | × / | BTL pickup ok |
| Beam Charge Monitor |        | 1(1)     | ICT install                      | Need DAQ                   |     |               |
| YAG screen monitor  |        | 1(1)     | screen                           | Need Controller            |     |               |
| Gallery environment | 1      |          | operation                        | SLED, gallery, driver line |     |               |
| Beam slit           |        | 1(1)     | Х                                | Need<br>controller/monitor |     |               |

# Storage Ring



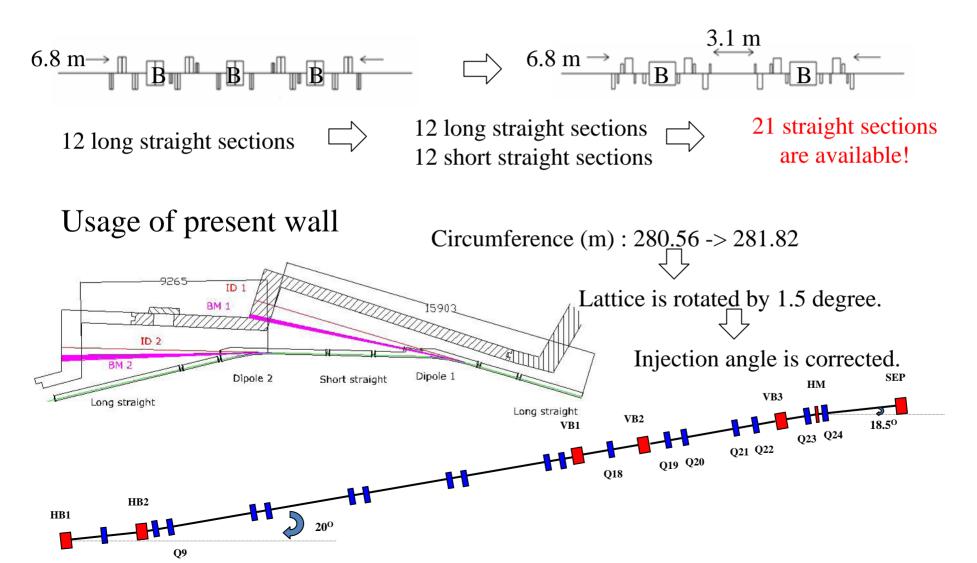




#### PLS Orbit Requirements

| 1.07        |            | -     |       |
|-------------|------------|-------|-------|
| <1%         | X-V        | coup  | ling> |
| <b>1</b> /U | <b>1</b> 1 | voup. |       |

|                      | Beam Size  |          | Orbit Stability |               |
|----------------------|------------|----------|-----------------|---------------|
|                      | Horizontal | Vertical | Horizontal      | Vertical      |
| Bending<br>Magnet    | 230 μm     | 24 μm    | 23 µm           | <b>2.4</b> μm |
| Insertion<br>Devices | 455 μm     | 35 μm    | 45 μm           | 3.5 μm        |

- Beam Energy 2.5GeV
- Beam Current 200mA
- Lattice TBA
- Superperiods 12
- Circumference 280 m
- Emittance 18.9 nm-rad
- **•** Tune 14.28 / 8.18
- RF Frequency 500 MHz
- Energy spread 8.5 x 10<sup>-4</sup>
  - 4 Rotax








|                                                         | Long SS  | Short SS | Bending<br>Magnet |
|---------------------------------------------------------|----------|----------|-------------------|
| Number                                                  | 9 or 10  | 11       | 24                |
| Length or                                               | 6.8      | 3.1      | 6.875             |
| Bending R (m)                                           |          |          |                   |
| <b>β</b> <sub>x</sub> (m)                               | 6.16     | 2.84     | 0.38              |
| $\beta_{y}(m)$                                          | 4.90     | 2.46     | 14.14             |
| $\eta_{x}(m)$                                           | 0.21     | 0.17     | 0.037             |
| $\sigma_{\rm x}  {\rm x}  \sigma_{\rm y}  ({\rm mm}^2)$ | 234 x 17 | 167 x 12 | 47 x 28           |

# Issues on lattice design / Limitation overcome Straight section for IDs



PLS-II IDs and Expected Photon Beam Performance

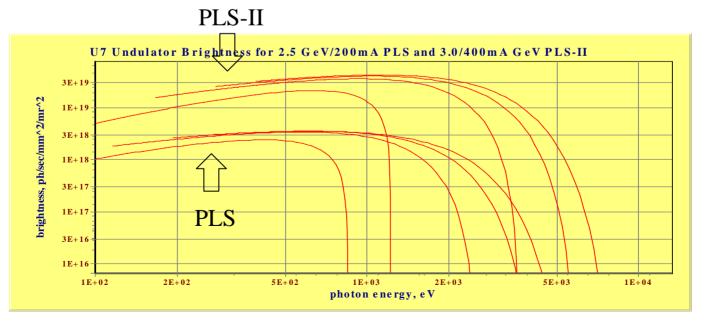
### Species of ID (Tentative, Not fixed yet)

X-ray undulator (6EA)

Period : 2 cm Length : 2 m Field : 1.2 T Brightness : 4E19 @ 2 keV

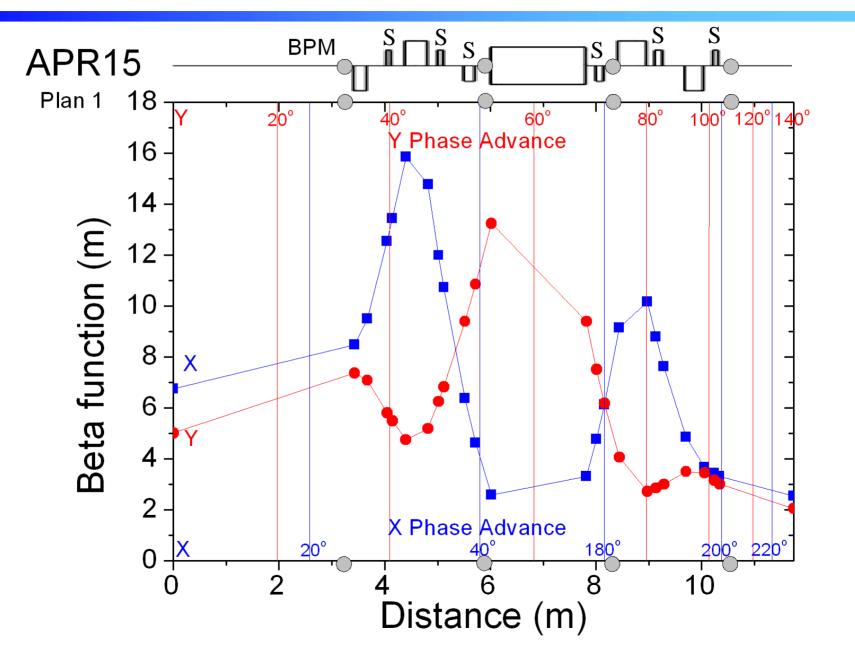
#### U7 (4EA)

Period : 7cm Length : 4m Field : 0.99T


### U7-Undulator brightness

#### **EPU6 (6 EA)**

Period : 6cm Length : 4 m Field : 0.69 T Brightness : 1E19 @ 0.8 keV

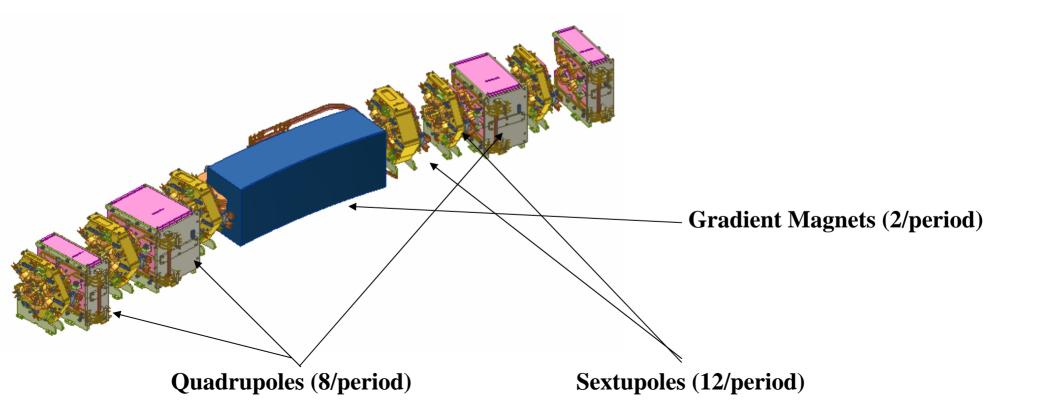

#### MPW (4EA)

Period : 14 cm Length : 2 m Field : 2 T






**BPM & corrector positions** 






|          | Monitor                         | Qty. | Function                        |
|----------|---------------------------------|------|---------------------------------|
| Electron | Beam Position Monitor           | 96   | Beam Position                   |
|          | DC Current Transformer          | 1    | Average Beam Current            |
|          | Stripline Electrode             | 2    | Tune, Beam Damping              |
|          | Screen Monitor                  | 3    | Beam Position (Commissioning)   |
|          | Scraper                         | 1    | Beam Trimming, Dynamic Aperture |
| Photon   | Photon Beam Position<br>Monitor | 36   | Frontend Beam Position          |
|          | Diagnostic Beamline             |      |                                 |
|          | X-ray                           | 1    | Beam Profile, Beam Size         |
|          | Visible Light                   | 1    | Beam Size, Bunch Length         |

## **PLS-II Magnet System Layout**





# Magnet System for PLSII

| Туре                 | Number          | Key Parameters                                               | Remarks                                                    |
|----------------------|-----------------|--------------------------------------------------------------|------------------------------------------------------------|
| Gradient             | 24<br>(2 X12)   | 1.4555 T, 4.0828 T/m<br>Gap=34 mm, L <sub>eff</sub> =1.800 m | All powered in series                                      |
| Quadrupoles          | 96<br>(8 X12)   | 4 types, Max Gradient 22T/m,<br>R <sub>c</sub> =36 mm        | Powered in family<br>series with<br>independent aux coils. |
| Sextupoles           | 144<br>(12 X12) | Max B'=550 T/m2<br>R <sub>c</sub> =39 mm, 6 types            | SkewQ, V-corrector,<br>H-corrector,<br>combined function   |
| Kicker<br>Magnet     | 4               |                                                              | <b>Recycle existing one</b>                                |
| Lambertson<br>Septum | 1               | 3.0 GeV, 8 or 6 vertical bending,                            |                                                            |

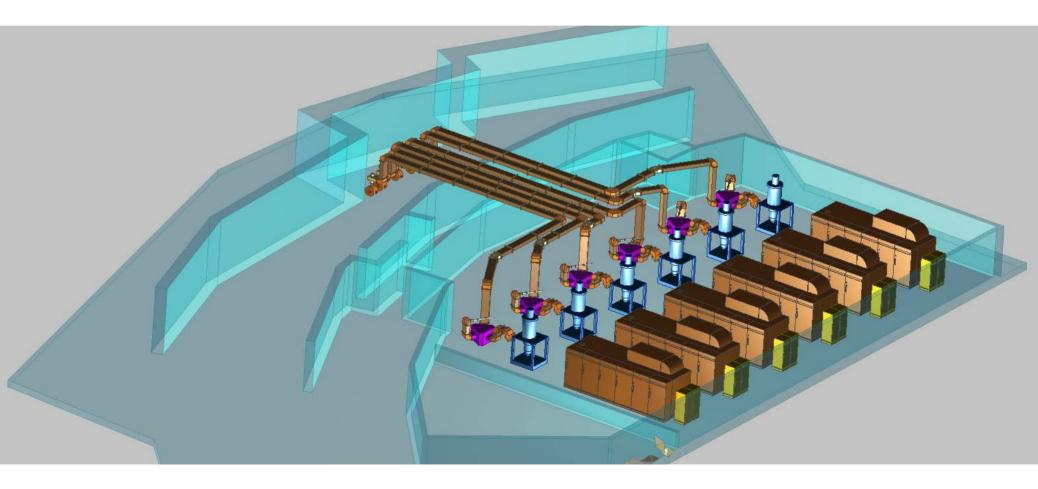


| Parameters                 | PLS-II RF | PLS RF  |
|----------------------------|-----------|---------|
| Current [mA]               | 400       | 200     |
| RF frequency [MHz]         | 499.66    | 500.082 |
| Total beam loss power (kW) | 696       | 130.2   |
| Accelerating Voltage [MV]  | 3.3       | 1.6     |

• To provide the required RF power and control beam instabilities at higher energy and beam currents with more high field IDs, the current PLS RF needs to be fully replaced with a new system.

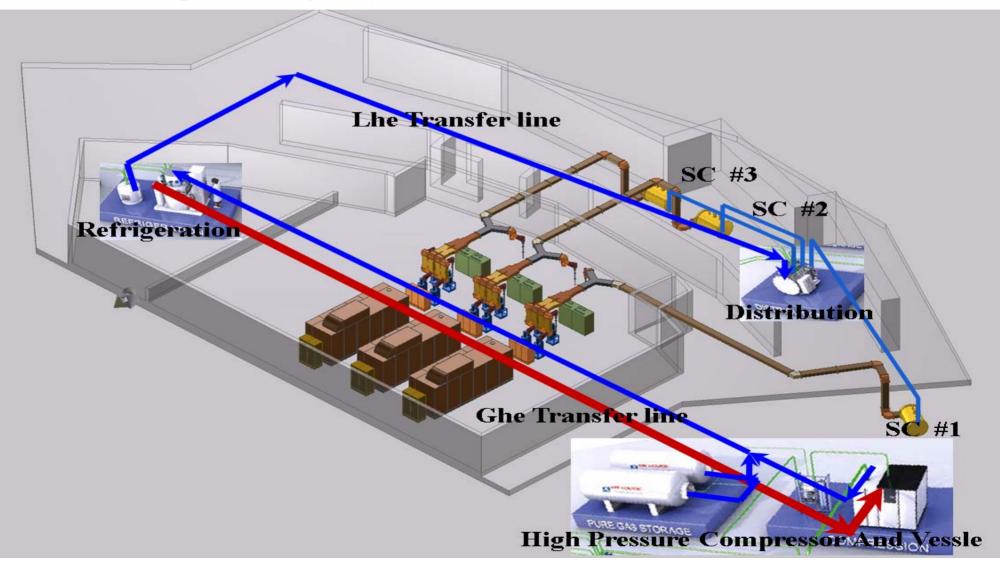


### Possible cavity choice and its corresponding facilities


|                                        | NC                        | SC                        |
|----------------------------------------|---------------------------|---------------------------|
| Number of cavity                       | 6                         | 3                         |
| RF voltage per cavity [MV]             | 0.55                      | 1.1                       |
| Wall loss power per cavity [kW]        | 44.5                      | 0.013                     |
| Beam load power per cavity [kW]        | 112                       | 223                       |
| RF Power need per cavity [kW]          | 163                       | 232                       |
| Number of high power system            | $250 \text{ kW} \times 6$ | $300 \text{ kW} \times 3$ |
| Number of LLRF system                  | 6                         | 3                         |
| Cryogenic heat load power (W)          | 0                         | 650                       |
|                                        |                           | 1.5Long-SS *              |
| Need for the storage ring tunnel space | 1–Long SS                 | 1 Long-SS+1Short-SS **    |
|                                        |                           | 1 Long-SS **              |

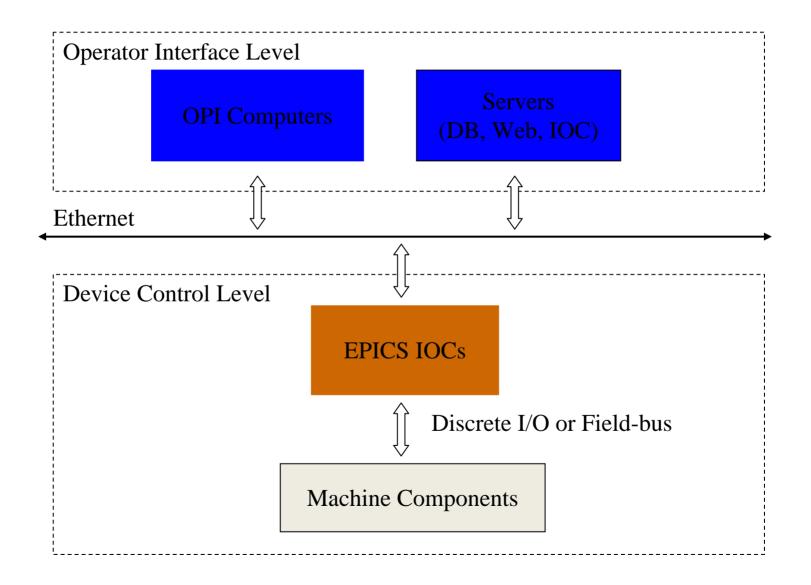
- •\*3 CESR or KEKB SRF cavities;
- •\*\* 2 CESR or KEKB SRF cavities+1 modified SRF cavity;
- •\*\*\* 1 cryomodule installed with 3 single-cell cavities.




## PLS-II RF system

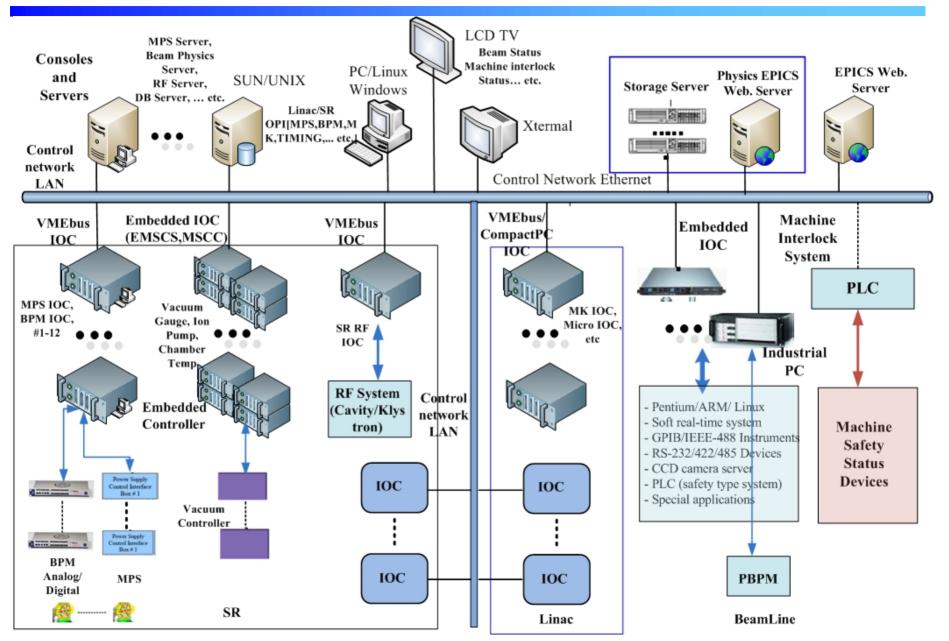
6 sets of normal conducting RF system.






#### 3 sets of superconducting RF system.





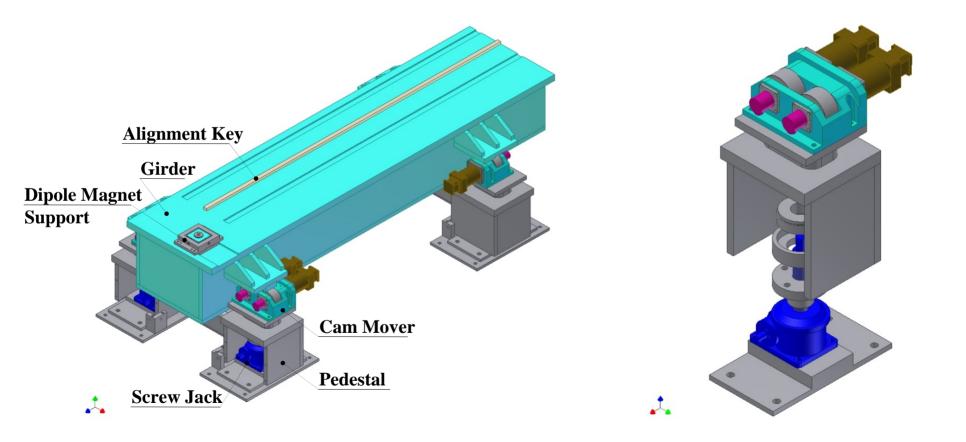

### Control System Standard Open Architecture





### Control System : Overall Configuration

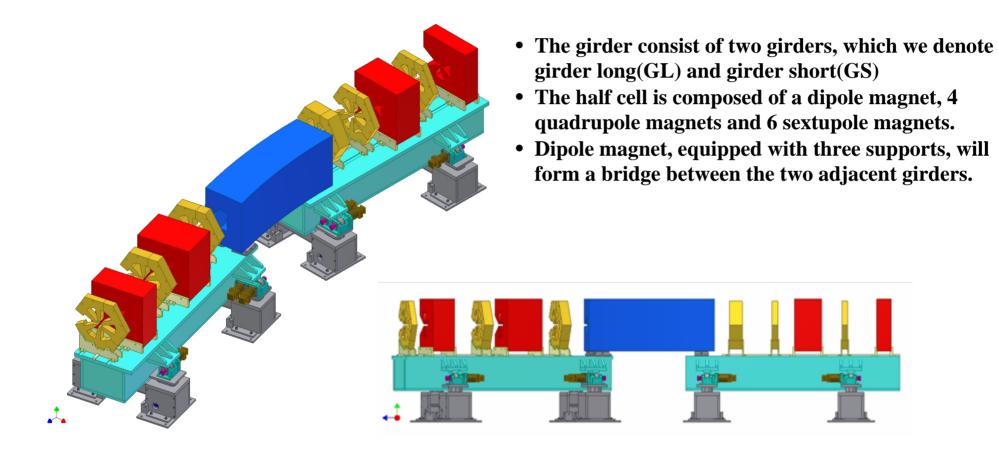





- Design Consideration
  - > Natural Frequency : >30 Hz
    - ✓ Horizontal SR Building : 3.48 4.26 Hz
    - ✓ Vertical SR Building : 5.67 6.93 Hz
    - ✓ Outstanding Frequency : 19.2, 23.8, 29.8 Hz
  - Girder System Basic Requirement
    - ✓ Girder Adjustment Full Range : >50 mm
    - ✓ Girder Deformation :  $\pm 30$ .
    - ✓ Active Mover System : Cam Mover and Screw Jack
      - Cam Mover Full Range : ±5 mm
        - Remote Automatic Control (HLS, HPS, LVDT)
      - Screw Jack Full Range : ±50 mm
        - Localized Manual Control



## PLSII Girder System


• Modeling of girder system





## PLS-II Girder System

#### • Magnet Girder of Half Cell





# Summary

- PLS-II has completed its major design and started component purchase.
- Final detail design will be reviewed by the PAL international advisory committee (IAC) on June 2009.
- ≻ TDR will be published in June 2009.
- The project is expected to finish on time and budget.



# Thank you for your attention!!

As usual, we are expecting very close collaboration and help from light source facilities all around world!