

A New High Performance Synchrotron Light Source for Brazil

Pedro F. Tavares

Brazilian Synchrotron Radiation Laboratory - LNLS

- Overview of LNLS and the LNLS-1 Light Source.
- Basic Requirements for LNLS-2.
- The LNLS-2 Project
 - Basic Parameters Parameter choice rationale.
 - Storage Ring Lattice
 - Storage Ring Subsystems
 - Schedule and Budget

Intel <th

- E= 1. 37 GeV; C = 93 m B = 1.67 T 2 keV critical energy 2.0 T MW; EPU; SCW
 - BeamLines 6 - VUV/Soft X-Ray •3 in operation •1 commiss. •1 construction •1 diagnostics 13 - Hard X-ray •10 in operation
 - •1 in commiss.
 - •1 refurbishment
 - •1 diagnostics

Basic Requirements.

General

- Designed to meet the **present** and **future** (time scale of 15 to 20 years) demands of the Brazilian and Latin-American scientific communities.
- Consider the possibility of future upgrades to new concepts not yet completely established such as the so called fourth-generation sources.
- Consider the possibility of manufacturing a significant fraction its components in Brazil, emphasizing the involvement of Brazilian industry.

- Design for **high reliability** of the facility (comparable to the reliability reached in the present source). The design must be conservative where possible without compromising the required performance.
- Design must be optimized with respect to both capital investment and future operational costs.
- Make the most out of the **existing LNLS infrastructure** in reducing capital investment costs for the project.
- LNLS-2 should have a **complementary character** with respect to LNLS-1, allowing the present light source limitations to be overcome, both with respect to its spectral coverage as well as with respect to the brightness of the radiation.

- Generate high brightness beams, comparable to or higher than what can be achieved in present day thirdgeneration sources. This implies very low emittance- on the order of or below 1 nm.rad.
- Provide with the use of a combination of conventional permanent magnet, in-vacuum and superconducting undulators – optimal photon beam brightness, i.e. brightness above

10²¹ photons/sec/0.1%/mrad²/mm² in the

1 to 20 keV photon energy range.

• Produce high brightness in excess of

10¹⁹photons/sec/0.1%/mrad²/mm² in the 100 eV to 1 keV spectral range.

- Generate high flux radiation (e.g. using superconducting wigglers) up to 100 keV.
- High degree of transverse coherence for Xrays up to about 10 keV
- Allow manipulation of the radiation time structure with various storage ring filling modes.
- Availability of very long beamlines.
- Priority must be given to obtaining high photon beam stability.

- Full energy injector Top-Up injection.
- Intensive use of narrow gap undulators, including invacuum undulators and superconducting undulators.
- Large scale use of small aperture permanent magnet technologies.
- Damping wigglers to reduce emittance.
- Superconducting RF system reduce power consumption and Higher Order Mode (HOM) related effects and Solid State RF power source.
- Flexible Magnet lattice.
- High reliability and stability requirements translate into system redundancy and tight component tolerances.
- New materials/techniques for vacuum chamber: NEG, copper.

Parameter	Value	Unit
Beam Energy	2.5	GeV
Beam Current	500	mA
Bending Field	0.45	Т
Natural Emittance Without Damping Wigglers	2.62	nm.rad
Natural Emittance With Damping Wigglers	0.84	nm.rad
Circunference	332	m
Number of Dipoles per Achromat	3	
Number of Dipoles	48	
Bending Radius	18.5	m
Critical Energy From Dipoles	1.87	keV
Harmonic number	554	
RF frequency	499.995	MHz
RMS Horizontal Beam Size at the Insertion Straight	162.9	microm
RMS Vertical Beam Size at the Insertion Straight	3.4	microm
Synchrotron Radiation Power From Dipoles	93	kW
Synchrotron Radiation Power From Damping Wigglers	242	kW
Total Synchrotron Radiation Power	384	kW

Lattice Functions

48 dipoles

16 periods

14 straight sections

(7 m long)

for insertion devices

Optimizing Wiggler Parameters and Bend Radius

Insertion Devices for LNLS-2

Device Name - Description	Period	Gap	Peak Field	Length	Power
	[mm]	[mm]	[T]	[m]	[kW]
U38					
Conventional Permanent Magnet					
Undulator	38	15	0.6	5.13	4.1
U60					
Conventional Permanent Magnet					
Undulator	60	21	0.8	6	6.8
U20					
In-Vacuum Permanent Magnet					
Undulator	20	5	1.1	5	12.9
SU14					
Superconducting Undulator	14	5	1.7	5.04	29.5
EU300					
Electromagnetic Undulator	300	20	0.2	6	0.3
W180					
Hybrid Wiggler	180	22	2.0	5.04	39.9
DW50					
Damping Wiggler	50	18.4	3.5	5	121.1
SW60					
Superconducting Wiggler	60	18.4	4.0	0.9	28.5

Operado pela ABTLuS para o CNPg / Ministério da Ciência e Tecnologia

vs Other Sources

Photon Energy [keV]

LNLS-2 Subsystems

- So far, preliminary design calculations have been performed on:
 - Linear Lattice, chromaticity correction, dynamic aperture with errors, closed orbit correction.
 - Magnet design.
 - Vacuum system design.
 - RF system design.
 - Power suply specification.
 - Control and Timing System specifications.
 - Diagnostic System specifications.

Lattice Sensitivity to Errors and Dynamic Aperture

Multipole comp. in sextupole : (B _n /B ₂) _{x=1 cm}			
	Systematic	Random	
Octupole	-	2.0 x 10 ⁻³	
Decapole	-	6.0 x 10 ⁻⁴	
Dodecapole	-	1.0 x 10 ⁻⁴	
14-pole	-	2.0 x 10 ⁻⁴	
16-pole	-	3.0 x 10 ⁻⁵	
18-pole	-4.0 x 10 ⁻⁵		
30-pole	3.0 x 10 ⁻⁷		

Multipole comp. in quadrupole : (B _n /B ₁) _{x=1 cm}		
	Systematic	Random
Sextupole	-	1.3 x 10 ⁻⁴
Octupole	-	4.8 x 10 ⁻⁵
Decapole	-	7.8 x 10 ⁻⁵
Dodecapole	-3.9 x 10 ⁻⁵	5.6 x 10 ⁻⁵
20-pole	-5.5 x 10 ⁻⁸	4.2 x 10 ⁻⁸

Multipole component in dipole: (Bn/Bo)x=1 cm		
	Systematic	Random
Quadrupole	-	1.5 x 10 ⁻⁵
Sextupole	-2.1 x 10⁻⁵	7.5 x 10 ⁻⁶
Octupole	-	1.7 x 10 ⁻⁶
Decapole	-9.2 x 10⁻ ⁶	7.3 x 10 ⁻⁷

Choice of Lattice Magnets Technology

Damping Wigglers → Large radius of curvature

 \rightarrow Low bending fields

Aperture is limited by insertion devices,
Top-Up
→ Small Lattice Magnet Apertures

Permanent Magnets for Lattice Magnets

- Permanent Magnets Low cost to build and operate, less flexibility
- Conventional electromagnets: higher cost (power supply, cooling).
- Preliminary calculations indicate that barium ferrite may be a cost-effecive solution for LNLS-2. A hybrid design with trim coils may provide some flexibility.

Technological Issues Related to the Large Scale use of Permanent Magnets in a Storage Ring

- Repeatability.
- Temperature Compensation.
- Radiation Damage.

Permanent Magnet Dipole Simulation

- B = 0.45 T
- Gap = 35 mm
- **Barium ferrite Magnets**
- **Hybrid Design**
- **MO6PFP001**

LNLS-2 Design and Construction	
Preliminary Budget	MUS\$
Accelerators	100
Beamlines	50
Conventional Facilities	50
TOTAL	200

LNLS-2 Design and Construction	
Preliminary Shedule	
Phase 1 - Preliminary Conceptual Design	Oct 2008 - Mar 2009
Phase 2 - Conceptual Design	Apr 2009 - Mar 2011
Phase 3 - Detailed Engineering Design	Mar 2011 - Dec 2012
Phase 4 - Construction and Commissioning	2013-2017
Phase 5 - LIGHT SOURCE OPERATION	2018 -

The search for professionals for the LNLS-2 project has already started!

LNLS-2:

Faça parte da equipe que construirá a nova Fonte de Luz Síncrotron do Brasil

O Laboratório Nacional de Luz Síncrotron (LNLS), localizado em Campinas, São Paulo, está iniciando o projeto de uma nova Fonte de Luz Síncrotron de alto desempenho para o Brasil, o LNLS-2. Para isso, procura físicos e engenheiros nas seguintes áreas: Física de Aceleradores, Controle e Automação,

O LNLS opera desde 1997 a primeira Fonte de Luz Síncrotron do Hemisfério Sul, o LNLS-1. O LNLS-2 será uma nova Fonte de alto desempenho e classe mundial: com um anel de armazenamento de elétrons de maior energia e circunferência (~350m), ela será capaz de produzir um feixe de luz até dezenas de milhões de vezes mais brilhante que o feixe gerado pelo LNLS-1, possibilitando o desbravamento de novas fronteiras em diversos campos da ciência. Fisica de Aceleradores, Controle e Automação, Mecatrônica, Microondas e Radiofrequência, Ultra-Alto Vácuo, Eletrônica de Potência, Instrumentação Eletrônica de Precisão, Magnetos para Aceleradores, Óptica de Raios X, Mecânica de Precisão e Programação Embarcada.

A candidatura de profissionais motivados e dinâmicos em início de carreira, bem como os já experientes, é incentivada. O trabalho é para início imediato e o LNLS oferece treinamento específico em suas próprias instalações, possibilitando também interação com outros síncrotrons do mundo. Além disso, proporciona um ambiente de estímulo à capacitação e à criatividade.

www.inis.br

Thank You for Your Attention!