X-Band Photonic Bandgap (PBG) Structure Breakdown Experiment

Roark Marsh, Michael Shapiro, Richard Temkin, *PSFC, MIT, Cambridge, MA 02139, USA*

> Valery Dolgashev, Sami Tantawi, SLAC, Menlo Park, CA 94025, USA

Outline

- Photonic Bandgap (PBG) modes
- □ SLAC single cell test stand
- □ PBG structure
- Breakdown testing results
- Autopsy surface imaging
- □ Hypothesis for results

Operating Modes

- \square TM₀₁ on-axis electric field for acceleration
- Pillbox walls confine fields
- Rods confine mode because its frequency is in the global band gap of the lattice

Parameter	Value
Rod Radius	2.176 mm
Rod Spacing	12.087 mm
Frequency	11.424 GHz

SLAC Setup

Single cell standing wave PBG structure TM₀₁ Mode Launcher WR-90 In TM_{01} In TM₀₁ Out Input PBG End Matching Test Matching Cell Cell Cell

PBG Structure Cold Test

Frequency: 11.424 GHz Field: ¹/₂ field in coupling cells, full field in test cell Coupling: near critical

PBG *HFSS* **Electric Field**

 \Box For 5.9 MW of power, 100 MV/m gradient = 208 MV/m surface field on iris PBG Test Cell End Input Matching Matching Cell Cell

PBG Structure Fabricated at SLAC

Breakdown Data

PBG SEM Damage

□ After High Power testing **Cut the structure in half** Scanning Electron Microscopy □ Irises undamaged 1000 µm 1000 µm 1000 µm

PBG SEM Damage

Inner Rods damaged, Outer Rods undamaged

PBG SEM Damage

Pulsed Heating damage on Rods, detail

IIIii

PBG Maximum Electric Fields

High Electric field regions
208 MV/m

PBG Maximum Magnetic Fields

High Magnetic field regions
890 kA/m

PBG Breakdown Hypothesis

- □ Electric field on rod: 14 MV/m
- □ Magnetic field → Pulsed Heating Damage → Increased β → Increased Electric Field → Breakdown

- Breakdown testing of an 11.424 GHz PBG structure at SLAC at high power (>5MW), rep rate (60Hz), and gradient (>100MV/m)
- □ First breakdown testing of a PBG structure
- No damage observed on peak electric field regions (>200MV/m)
- Identified rf magnetic field as a major issue affecting breakdown

Future Plans and Other Work

Next Structure possibilities

- Redo first PBG design with lower pulsed heating
- Elliptical rod PBG for lower pulsed heating
- 5 Rod PBG (under investigation)

□ Other papers at PAC 2009 Roark Marsh: WE6RFP081

Brian Munroe: WE6RFP082

Acknowledgements

- Funding: Department of Energy, High Energy Physics, under contracts DE-FG02-91ER40648 and DE-AC02-76-SF00515
- SLAC National Accelerator Laboratory: David Martin (mechanical design), Jim Lewandowski (cold test), Dian Yeremian (hot test), Lisa Laurent (SEM micrographs)

PBG Structures, *The Next Generation*

 Elliptical rod design with less pulsed heating
 100 MV/m, 100 ns, 48 K temperature rise on rods, compared with 78 K for first PBG structure

Parameter	Value
Major Radius	3.399 mm
Minor radius	2.266 mm
Rod Spacing	12.588 mm
Outer Rod Radius	2.266 mm

Pillbox Breakdown Results

- □ 17 Structures tested to date
- Various pillbox geometries can be compared
- Gradient is a two-dimensional problem: rate vs gradient, or other field parameters
- □ Data collapses when looking at magnetic field?

