

Recent Results on Acceleration Mechanisms and Beam Optimization of Laser-Driven Proton Beams

S. Buffechoux^{1,2}, J. Fuchs¹, M. Nakatsutsumi¹, A. Kon³, R. Kodama³ P. Audebert¹, S. Fourmaux², J.C. Kieffer², H.Pepin²

¹ Laboratoire pour l'Utilisation des Lasers Intenses, Palaiseau, France.
 ² Institut National de la Recherche Scientifique, Varennes, Québec.
 ³Japan Atomic Energy Agency, Osaka.

Actual characteristics

- Low emittance beam: 0.015 mm.mrad
- Laminarity: virtual source size of 4 μm
- Short bunch duration: few picoseconds

•High proton numbers: 10¹¹-10¹³ per bunch

• High energy: Up to 60 MeV

Applications

- Warm dense matter generation: high current and large spectra
- Plasma field radiography: large spectra

• Compact accelerator system: laminarity, emittance, cost and facility size.

mechanism

Predominant mechanism: **Target Normal Sheath Acceleration**

Paths toward beam optimisation

- Increased laser intensity:
 - Improved laser parameters limited by laser development
 - Reduced focal spot limited by diffraction and experiment geometry
- Reduced electrons dilution:
 - Limited lateral size target
 - Reduced target thickness
- Increased laser absorption:
 - New interaction regimes
 - New kind of target

Need for high contrast laser

Laser intensity increase using Elliptical plasma mirror (using a 400fs laser pulse)

- Reduced spot size: very short focal length
- Increased contrast ratio:

Reflectivity increases abruptly when Intensity is high enough : Amplified Spontaneous Emission is reduced

Electron confinement using reduced lateral size target (using a 400fs laser pulse)

Electron sheath is confined if target size < "natural" sheath size

When target surface is less than 0,1 mm² we increase ...

Electron sheath parameters are improved $dN/dE=1.3N_{hot}c_s/[c(2Ek_BT_{hot})^{1/2}]exp(-[2E/(k_BT_{hot})]^{1/2})$ Fluid model: slope J. Fuchs et al., Nature Physics 2, 48 (2006). height 3.5 13 (a) 10 (b) ğ 7 10¹² 1 1 1 1 1 1 1 0.001 10 0.001 0.01 0.1 10 0.01 0.1 Surface (mm²) Surface (mm²) **Coupling** between laser and plasma is increased

Using 25fs laser pulse duration

- High laser intensity with only few Joules
- 10 Hz repetition rate
- High contrast ratio

With plasma mirrors:

- 220 mJ on target
- 6,5µm target thickness

Comparing with others laser facilities around the world

Using very thin target (less than 1µm), with high laser

contrast:

expect to increase significantly proton

Conclusion

All the above-shown different approaches demonstrate feasible optimization paths for proton beams acceleration.

Other paths toward energy increase:

- Using coating or foam target: increase absorption.
- Using several beams: modify electrons acceleration.
- Using circular polarisation: RPA regime.
 Laser driven protons acceleration becomes more and more interesting :
- laser development.
- Better understanding in proton acceleration mechanism.

Thank you for your attention

Any questions?

Time And Space Resolved Interferometry

