Neutron Source with Emittance Recovery Internal Target (ERIT)

Y. Mori, Y.Ishi, Y.Kuriyama, Y.Sakurai, T.Uesugi Kyoto University, Research Reactor Institute K.Okabe, I.Sakai Fukui University

Boron Neutron Capture Therapy (BNCT)

Li ions and a particles are high linear energy transfer particles with high biological efficiency. Li ions and a particles destroy cells within about 10 μ m path length from the site of capture reaction.

It is theoretically possible to kill tumor cells without affecting adjacent health cells, if ¹⁰B atoms can be selectively accumulated in tumor cells.

How to do?

¹⁰B compound

Boron Neutron Capture Therapy (BNCT)

Borocaptate sodium (BSH) L-p-Boronophenyl alanine (BPA)

 $^{1}n + ^{10}B \rightarrow ^{4}He(\alpha) + ^{7}Li + 2.8 \text{ MeV}$

著しいがん細胞の 成長により体内に 止まらず皮膚をも 破りさらに増大 絶大なるがん細胞縮小の
 効果を得ただけでなく
 他の放射線治療では
 成し得ない、
 皮膚の再生を確認。

腫瘍はほぼ完全に縮退。 高いQOLを達成。

lung, liver etc.

SKY PerfecTV!

サイエンス チャンネル

"03, 3月2日 18:00 放映 Japan Science and Technology Corporation(JST)

Department of Neurosurgery University of Tsukuba

Progression-Free Survival

gliobrastomer

Department of Neurosurgery University of Tsukuba

Dose concentration: better than hadron therapy Total amount of the dose (Gy-eq/h) therapy ¹⁰B-concentration: normal lung ;11.4ppm, Lung cancer; 38.8ppm

Department of Neurosurgery University of Tsukuba

Dose concentration: better than hadron therapy

¹⁰B-concentration: normal lung ;11.4ppm, Lung cancer; 38.8ppm

BNCT

The successful treatment of cancer by BNCT requires the selective delivery of relatively high concentration of ¹⁰B to malignant tumor tissues and cells.

Advantage : α -particles with short range as 10μ m

Disadvantage : (1)Low intracellular localization of ¹⁰BSH against tumor cell via systemic administration (2)Neutron source with nuclear reactor of >10MW

Strategy : (1)DDS Targeting carrier (liposome, polymer ···) Ligand for internalization (antibody, TF, EGF ···) (2)ABNS Accelerator based neutron source

Neutron source for BNCT

- High flux
 - > 1 x 10⁹ n/cm²/sec at patient for 30minutes treatment
- Low energy spectrum
 - Thermal/epi-thermal (En<1keV) neutrons

Nuclear reactor of >10MW output power is requested.

ABNS

(accelerator-based neutron source)

- Neutron production reaction
 - 9Be(p,n)B, 8Li(p,n)Be
- Low energy proton
 - 3-10MeV
 - (Coulomb barrier ~2MeV)
 - – Low gamma-ray background
- Large reaction cross section
 - ~500mb

Difficulties of ABNS with external target

- Large gamma-ray production from target/moderator
 - difficult to shield

ABNS with internal target FFAG-ERIT

(FFAG Accelerator with Emittance/Energy Recovery Internal Target)

Y.Mori, Nucl. Instr. Meth., PRS, A562(2006) 591-595.

FFAG-ERIT for **ABNS**

• Energy loss

- Recovered by RF re-acceleration
- Emittance growth due to scattering
 - Cured by "Ionization Cooling"
- Beam intensity
 - Required accelerating averaged beam current is reduced by number of turns

Energy loss

- Proton energy : 10MeV(dE/dx = 30MeV/g/cm²)
- Target thickness : 5 micron for Be
- Beam intensity : 100mA
 - Energy loss / turn ~30KeV
 - Beam power lost in the target ~ 2.4kW
- Heat load & radiation damages are modest.

Temperature rise of Be target

Irradiation damage of Be target

SRIM code

proton beam current IA energy I0MeV Be target 8micro-m

> Dislocation < 0.1 dps small enough

🍓 SRIM-2003.20					_ @ 🛛
File Help, FAQ and Scientific Expl	anations				
ION	TARGET DATA			Calculation Parame	ters
Ion Type H 1.008 amu Ion Energy 5 MeV Ion Angle 0 degrees Completed 99999 of 0 SHOV LIVE DATA HELP	P H (10) into Layer 1 (1 layers, 1 Layer Name Width (A) Densit 1 Layer 1 80000 2 Lattice Binding Energy 1 Surface Binding Energy 0 1	atoms) y Be (9.012) Solid/Gas .848 1.00000 Solid 3 .3.38 .20	s Stop Corr.	Backscattered Ions Transmitted Ions Vacancies/Ion ION STATS Range Longitudinal 1428 A	0 99999 0.3 Straggle 317 A
Plots	B VV I op situdinal			Lateral Proj. 318 A Badial 444 A	398 A 251 A
PLOT Window 0 A - 80000 A				Type of Damage Calcu	lation
Max Target Depth 80000	_ Depth vs. Y-Axis	4		? Quick: Kinchin-Pease	_
COLLISION PLOTS		1		Stopping Power Version 2 SBIM-2003	<u> </u>
Y Z Longitudinal None XY Ions Only YZ Lateral Clear Background color White/Black	- 			% ENERGY LOSS Ions Ionization 99.9 Vacancies 0.0 Phonons 0.0	Recoils 6 0.01 0 0.00 1 0.02
File Plot DISTRIBUTIONS ? Ion Distribution Ion/Recoil Distribution ? Ion/Recoil Distribution	- - - -			SPUTTERING YIELD Atoms/lon eV/# TOTAL Be 0.000000	<u>stom</u>
Energy to Recoils Damage Events				? ▼ Save every 10	000 ions
? Integral Sputtered Differential Ions ? Ion Ranges (3D data)	O A - Target Depth - Save Save As Print Label Clear	<u> </u>		Random Number Counter	
Backscattered lons Transmitted lons Collision Details				-	
HELP					
🦺 スタート 🔰 🏹 TRIM Inp	ut 🙀 SRIM-2003.20	SRIM-2003.20	Microsoft PowerPoin	EN 1 🔇 🛱 🌭 🗟 🌒	🛃 🕸 📃 🎓 3:18 РМ

Emittance growth

 Using an internal target, the beam emittance is increased by multiple scattering and straggling. However, in ERIT, "Ionization Cooling" suppresses the emittance growth.

Ionization Cooling

$$\frac{d\varepsilon}{ds} = A\varepsilon + B \qquad \qquad \varepsilon: \text{ beam emittance}$$

transverse

$$= -\frac{1}{\beta^2 E} \left\{ \frac{dE}{ds} \right\} \qquad B = \frac{\beta \gamma}{2} \beta_T \frac{\left(13.6 MeV\right)^2}{\left(\beta cp\right)^2 L_s}$$

longitudinal

$$A = 2 \frac{\partial \left(\frac{dE}{ds}\right)}{\partial E}$$

A

Rutherford multiple scattering

$$B = 4\pi \left(r_e m_e c^2 \right)^2 n_e \gamma \left[1 - \frac{\beta^2}{2} \right]$$

straggling

proton beam 10MeV Be target

Transverse→Cooling Longitudinal→Heating

3D beam cooling becomes possible if transverse and longitudinal motions are coupled.

Sum of distr. function:

$$\sum_{1}^{3} g_i > 0$$

Emittanc growth

No. of turn

NO.

Need a large momentum acceptance ring --> FFAG (zero-chromaticity)

R&D Project of Next-generation DDS-type Malignant Tumor Therapy System

Purpose

 Development of a prototype of compact accelerator-based thermal/epithermal neutron source for BNCT(boron neutron capture therapy)

• Performance

- Neutron flux enough for 1 hour treatment
- thermal/epithermal neutron flux : $\phi \sim 1 \times 10^9 \text{ n/cm}^2/\text{sec}$ @patient
- Three-year (2005-2007) project supported by New Energy Development Organization (NEDO) in Japan
 - Construction was successfully completed.
 - Beam test has been carried out.

FFAG-ERIT ring for ABNS

Characteristics of ABNS with FFAG-ERIT ring

- Large beam current/beam power
 - circulating beam
 - ciruculating beam current(beam power) >50mA(500kW equi.)
- more than 10times compared with external target
 Modest loads for the target and accelerator

 small heat load and low radiation damage with thin
 - target
 - heat load ~3kW
 - radiation cooling : temeprature 650-700 C
 radiation damage 0.1dps
 - Lifetime >month
 - small beam current for the accelerator
 accelerator beam current
 Ia = Ic / N(# of turns)

 - beam current Ia=Ic/N=50µA : if N=1000turns
- Small gamma-ray production
 thin target, no cooling medium and no beam dump at target region
- multi-target & multi-directional irradiations
- Small radiation shielding
 modest beam current
 - - small buildings and low infrastructure cost

ABNS with FFAG-ERIT ring

Characterisitcs & Performance

• FFAG-ERIT ring

- circ. beam current
- beam life(# of turns)
- acceptance
- magnet
 - gap height
- rf cavity
 - frequency
 - rf voltage
- beam energy
- averaged beam current

• Injector

- beam current
- Neutron production target
 - Be,10µm
- Moderator
 - thermal+epithermal
 - gamma-ray · fast neutron

70mA

1000turns

Av>500mm.mrad(rms), dp/p>+-5%(full) large aperture, small fringing filed 15cm

~20MHz(harmonic number :5 >200kV Injector 11MeV 70µA

>70µA (20-200Hz, duty ~2%)

heat load <6.6W/cm²,Lifetime>1 month

>10⁹ n/cm²/sec

Nuclear reactor level (IAEA)

Ion Source

- particle: negative hydrogen
- extraction energy : 30 keV
- rep. rate : 200Hz (goal : 500Hz)
- beam duration : 2%, maximu
- beam current :
 - 100µA (ave.)
 - 5mA(peak:goal10mA)
 - commissioning: 1mA(cw)achieved(Dec.2006)
- nor. emittance : <1πmm-mrad

Proton linac

$PULSAR: developed for <math display="inline">PET_{\circ}$

AccSys Inc. PULSAR

RFQ

DTL

FFAG-ERIT RING

-beam energy -circ. beam current -beam life(# of turns)

11MeV 70mA 500-1000turns

-acceptance Av>3000mm.mrad, dp/p>+-5% (full)

Parameters of FFAG-ERIT ring

Radial sector FFAG magnet

FDF lattice Cell num. = 8 F-Mag. = 6.4[deg], D-Mag. = 5.1[deg], F-D gap 3.75[deg], F-Clamp gap = 1.9[deg], Clamp thick = 4[cm]Mean radius = 2.35[m]

 $n_X \sim 1.75$, $n_Y \sim 2.23$ FD ratio ~ 3

Vertical beta function & acceptance

Vertical beta function@target ~ 0.83 [m]

Vertical acceptance ~ 3000π [mm-mrad]

(Horizontal acceptance > 7000π [mm-mrad])

RMS emittance / energy spread

Number turns for beam survival

Average turn numbers for beam survival ~ 910 turns

rf cavity for ERIT ring

•Inner diameter ϕ 200cm, •axial length 40cm, cap. electrode: ϕ 160cm × t2cm,

- gap btw cap. electrode and cavity end plate 3cm,
- •tuner: ϕ 20cm × L50cm,
- beam duct : w38cm × h20cm,
- •coupler : diameter 12cm × L30cm, ϕ 2cm

rf cavity for FFAG-ERIT

End plate

frequency 18.1MHz

rf voltage >200kV

Neuron production target lifetime

• Lifetime is mainly determined by evapolation.

- \rightarrow Low temperature operation(<650C) is essential.
- •Heat power density <6.6W/cm2 for 3 months operation.

Moderator

basic layout

1st moderator(Fe/AIF3)): $0 \sim 10$ cm, 2nd moderator(60%AIF3/40%AI): $10 \sim 30$ cm, 3rd moderator(AIF3/D20): $10 \sim 20$ cm, γ -ray shield(Bi): $5 \sim 10$ cm

Neutron spectrum : example of simulation (under optimization)

Performance of moderator

• Neutron flux

- Thermal neutron flux : 7×10^8 (cm⁻²s⁻¹)
- Epi-thermal neutron flux : 5×10^8 (cm⁻²s⁻¹)
- Total (thermal + epi-thermal) : 1.2×10⁹ (cm⁻²s⁻¹) @ patient
- Contamination of fast neutron
 - 2-2.5 times larger than IAEA standards, however, comparable with those from ordinary nuclear reactors(KUR,JRR4 etc.)
- Contamination of gamma- ray
 - Lower than IAEA standards, however, not includes those from target nucleus.

8 Mar 2008

Measurement of emittance growth

 Emittance growth as a function of turn numbers is measured with beam scrapers (hor.&vert.) placed in the ring.

$$\mathcal{E}_{T} = \frac{B}{A} + \left(\mathcal{E}_{0} - \frac{B}{A}\right) e^{-As},$$
$$A = -\frac{1}{\beta^{2} E} \left\{\frac{dE}{ds}\right\}$$
$$B = \frac{\beta \gamma}{2} \beta_{T} \frac{\left(13.6 MeV\right)^{2}}{\left(\beta cp\right)^{2} L_{s}}$$

Summary

- Intense neutron source for BNCT with FFAG-ERIT(emittance/energy recovery internal target) scheme was constructed and works as expected.
 - Storage beam current was 50mA equ. for 200Hz operation.
 - Emittance growth agreed well with ionization cooling model.
 - Neutron yield measured with He³ detector was ~5x10⁸ n/cm²/sec equ. for 200Hz operation at the moderator exit.
- Future
 - Target lifetime test for full beam duty operation.
 - Neutron spectrum measurement