PAC09, Vancouver, Canada, May 2009 Contribution ID : 1010 Paper ID : TH3PBI02

Progress of the SCSS Test Accelerator for XFEL/SPring-8

Kazuaki Togawa RIKEN SPring-8 Joint Project for XFEL

Members

K. Togawa, H. Tanaka, T. Hara, T. Tanaka, M. Yabashi,
Y. Otake, T. Asaka, T. Fukui, T. Hasegawa, A. Higashiya,
N. Hosoda, T. Inagaki, S. Inoue, M. Kitamura, H. Maesaka,
M. Nagasono, H. Ohashi, T. Ohshima, T. Sakurai,
K. Shirasawa, S. Takahashi, K. Tamasaku, S. Tanaka,
T. Togashi, T. Ishikawa, H. Kitamura, T. Shintake

from Joint Team of RIKEN and JASRI

Light Sources at SPring-8

Outline

- Overview of the SCSS Test Accelerator
- Stable EUV-SASE for User Experiments
- Resent Topic on the SCSS Test Accelerator
- Construction Status of the XFEL Project at SPring-8

Overview of the SCSS Test Accelerator

SCSS Concept for Compact XFEL Lower beam-energy is essential !! 1) Short-period Undulator

> Radiation Wavelength $\lambda = \lambda_u (1 + K^2/2)/2n\gamma^2$ In-vacuum Undulator

2) High-gradient Linac

Higher Frequency \longrightarrow C-band Linac (5712 MHz)

3) Low-emittance Electron Injector

Need for short gain-length of SASE-FEL.

$$\varepsilon = \frac{\varepsilon_n}{\beta \gamma} \longrightarrow \frac{\text{Single-crystal Thermionic Gun}}{+\text{Stable Buncher}}$$

T. Shintake et al, Proc. SPIE 4500 (2001) p.12

SCSS Test Accelerator

Low-emittance Thermionic Injector

C-band Linac and In-vacuum Undulator

C-band Linac

In-vacuum Undulator

<image>

Choke-mode Structure (HOM-free) Structure Length : 1.8 m X 4 #2 unit is operating at 37 MV/m. Magnet Period : 15 mm Period Number : 300 X 2 Gap : 3 mm (min.), variable K-value : 1.5 (max.), variable

Characteristics of Electron Beam

Electron Beam

Energy	250 MeV
Charge	0.3 nC
Peak Current	300 A
Bunch Width	0.7 ps
Rep. Rate	60 pps (max.)
Initial Emittance (normalized, rms)	0.6π mm mrad (90%-core)

Transverse Profile

OTR monitor at C-band linac exit

EUV-SASE Saturation

Normalized Emittance = 0.7π mm mrad !!

Stable EUV-SASE for User Experiments

Stable EUV-SASE for User Experiments

In 2008FY, SCSS successfully delivered stable EUV-SASE light through a year.

- 11 research groups used the SCSS facility. Atomic-molecular Science Coherent Imaging Solid-state Physics Etc.
- Total Operation Time : 95-days (840-hours)
- Downtime Rate : 4%
- 80-days was used for improvements and R&Ds.

Characteristics of EUV Photon Beam

EUV Photon Beam

Wavelength	50-60 nm
Pulse Energy	30 μJ typical
Power Fluctuation	~10%
Spot Size*	3 mm (FWHM)
Pointing Stability*	5% of spot size
Averaged Spectrum Width	0.6% (FWHM)

* 10m downstream from the udulator

Stability of EUV Photon Beam

Trend Graph of Pulse Energy

Transverse Profile

Time measured by Si photodiode

measured by Ce:YAG screet

Stable EUV photon beam is routinely delivered !!

Evidence of Full Spatial Coherence

Iris: ϕ 10 mm CCD image

Good Spatial Coherency !!

by courtesy of Dr. Yoshinori Nishino of RIKEN Harima Institute

Recent Topic on the SCSS Test Accelerator

Longitudinal Electron Beam Property

Shot-by-shot Electron Bunch Timing Need for precise experiments. Longitudinal Bunch

Need for reliable commissioning.

Structure

Non-destructive and real-time measurement can be done by Electro-Optical sampling method.

G. Barden et al, Phys. Rev. Lett. 93, 114802 (2004)

Electro-optical Sampling Method

Longitudinal Structure Encoded

Preliminary Result at SCSS

Construction Status of the XFEL Project at SPring-8

XFEL/SPring-8

Electron Beam

Energy	8 GeV
Peak Current	4.4 kA
Bunch Width	55 fs (FWHM)
Repetition rate	60 pps

Photon Beam

Wavelength	0.1 nm
Peak Power	>20 GW
Pulse Energy	0.8 mJ/pulse
Bandwidth	9 X 10 ⁻⁴

Accelerator Tunnel

Schedule

March 2009

Building construction was completed. 70% of the main rf components were fabricated.

Summer 2009

Installation of the C-band main linac will be started.

Fall 2010

Equipment installation will be finished. Rf-aging, beam commissioning.

2011~

User operation will be started.

Summary

- The SCSS test accelerator has successfully delivered stable EUV-SASE laser pulses, whose fluctuation is kept in 10% during the experimental period, for various experiments through a year.
- The experience of the machine operation is being fed back to the construction of the 8-GeV XFEL/SPring-8.
- User experiments at the XFEL/SPring-8 will be started in 2011.

Spatial Decoding

History of the XFEL Project at SPring-8

- 2000 : Concept of the SPring-8 compact SASE source.
- 2001-4: R&D of machine components. (Thermionic Gun, C-band Linac, In-vacuum Undulator)
- 2005 : 250-MeV SCSS test accelerator constructed.
- 2006 : First lasing at 49 nm at SCSS.
 : Design and construction of 8-GeV XFEL/SPring-8 started.
- 2007 : Saturation at 50-60 nm. User operation started at SCSS.
- 2008 : Building construction of XFEL/SPring-8 completed.
- 2011 : User operation (~0.1 nm) will start at XFEL/SPring-8.