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● Axis 1, Completed 1999
● Linear Induction Accelerator
● 1.8-kA electron-beam current
● 19.8-MeV electron kinetic energy
● Single radiograph
● Fixed pulsewidth
● 60-ns FWHM
● < 2-mm spot (50% MTF) 
● 550 Rad @ 1 m

● Axis 2, Completed 2008
● Linear Induction Accelerator
● 2.0-kA electron-beam current
● > 17-MeV electron kinetic energy
● 4 radiographs within 1.6 μs
● Programmable pulsewidths
● 35-ns, 40-ns, 40-ns, 100-ns FWHM 
● < 2 mm spots (50% MTF) 
● 170, 185, 170, 445 Rad @ 1 m 

●

 

Flash radiography of large, high-explosive 
driven experiments contained in vessels.

●

 

Two accelerators provide simultaneous, 
orthogonal radiographs. 

DualDual--Axis Radiography for Axis Radiography for 
Hydrodynamic TestingHydrodynamic Testing
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In this talk I will briefly tell you about:In this talk I will briefly tell you about:

•
 
Beam Dynamics in the Axis-II Linear Induction Accelerator
–

 
Beam Sweep 

•

 

< 10 mm ( > beam size)
–

 
Beam Breakup (BBU)

•

 

<< 1 mm ( << beam size)
–

 
Ion Hose instability

•

 

<< 1 mm ( << beam size)

•
 
Transport of kicked pulses to converter target and 
production of multiple radiography source spots 
–

 
4 spots, < 2 mm “50%MTF”
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The multipleThe multiple--pulse second axis  is a significant pulse second axis  is a significant 
advance in LIA technology.advance in LIA technology.

● Final Beam Energy > 17 MeV
●

 

Kicker system used to produce  4 pulses 
on the x-ray target:
● < 2 mm spot size (50% MTF) 
● 35-ns, 40-ns, 40-ns, 100-ns pulse FWHM
● 170, 185, 170, 445 Rad @ 1 m 

● Commissioning completed March 2008
● Injector diode – 2.5 MeV, 2 kA, 1.6 μs

● Marx generator powered
● Hot dispenser cathode

● 6 Injector cells at 185 keV/cell
● 68 Accelerator cells at 216 keV/cell 

e
-
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Beam position monitors (BPM) measure position Beam position monitors (BPM) measure position 
and current throughout the accelerator. and current throughout the accelerator. 

BPMs are located at the diode exit, at the entrance 
to every block of cells, and at the accelerator exit.  

High-bandwidth recording is used at 
entrance and exit to measure BBU2 Gs/s 5 Gs/s

Poster:     TH5RFP074, “DARHT II Accelerator Beam Position Monitor 
Performance Analysis,” Jeff Johnson,  et al. ,  This Conference 
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Magnetic
spectrometer

Beam imaging
station

BPMs

For commissioning, we installed diagnostics after the For commissioning, we installed diagnostics after the 
exit to measure the accelerated beam parameters. exit to measure the accelerated beam parameters. 
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The beam is transported in a strong solenoidal The beam is transported in a strong solenoidal 
focusing field with an axial variation (tune) designed focusing field with an axial variation (tune) designed 
using beam envelope codes.using beam envelope codes.
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The 2The 2--kA electron beam  is transported through the kA electron beam  is transported through the 
accelerator without losses.accelerator without losses.

Current terminated by 
diode diverter switch

1.6-μs window used for 
4 radiograph pulses

Overlay of BPM Measurements
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The initial conditions for the envelope equations  The initial conditions for the envelope equations  
(radius and convergence) are obtained from PIC (LSP) (radius and convergence) are obtained from PIC (LSP) 
and gunand gun--design (TRAK) simulations of the diode. design (TRAK) simulations of the diode. 

r0

 

and r0

 

’ as 
functions of VAK

TRAK Simulation
TRAK and LSP also 
provide current and 
emittance as 
functions of VAK

VAK

 

= 2.5 MV
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Initial conditions as functions of diode voltage from Initial conditions as functions of diode voltage from 
simulations were  converted to initial conditions as simulations were  converted to initial conditions as 
functions of time using measured diode waveforms.functions of time using measured diode waveforms.

+
TRAK

Voltage 
Monitor

Used for LAMDA 
envelope code
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The TRAK/LSP initial conditions were validated by The TRAK/LSP initial conditions were validated by 
retuning the injector output to scrape off most of the retuning the injector output to scrape off most of the 
beam head.beam head.
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A slow, energyA slow, energy--dependent sweep dominated the beam dependent sweep dominated the beam 
motion at the LIA exit. motion at the LIA exit. 

Exit 3-m from Exit

Y(mm)

X(mm)

θy (mr)

θx (mr)

1.6 μs
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The sweep correlates with the small variation of The sweep correlates with the small variation of 
the > 17 MeV beam energy measured with a the > 17 MeV beam energy measured with a 
magnetic spectrometer.magnetic spectrometer.
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The strong energy dependence suggests that the sweep The strong energy dependence suggests that the sweep 
is an interaction with misalignment produced dipoles, is an interaction with misalignment produced dipoles, 
like the corkscrew present in earlier LIAs.like the corkscrew present in earlier LIAs.

This sweep is unlikely the result of the resistive-wall instability growth, 
which is independent of energy in a solenoidal focusing field. 
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We demonstrated that we could reduce the sweep by We demonstrated that we could reduce the sweep by 
using steering dipoles to center beam through the using steering dipoles to center beam through the 
accelerator. accelerator. 

Beam centered 
through accelerator
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The magnetic focusing tune of the present tune is The magnetic focusing tune of the present tune is 
strong enough to suppress the beamstrong enough to suppress the beam--breakup (BBU) breakup (BBU) 
instability to less than 10% of the beam radius.instability to less than 10% of the beam radius.
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In an earlier experiment with the original cells (2005), In an earlier experiment with the original cells (2005), 
we confirmed the theoretical scaling of BBU growth.we confirmed the theoretical scaling of BBU growth.

Best Fit to data is with
Z⊥

 

= 184 ± 6 Ω/m

Direct RF measurement 
of Z⊥

 

in a cell :
157 Ω/m average over 
158 – 178 MHz band

Carl Ekdahl, et al., IEEE Trans. Plasma. Sci. Vol. 34, 2006, pp. 460-466
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●

 

In the high-current, strongly-focused, accelerated-beam regime the BBU rapidly 
grows to a saturated amplitude:

ξ/ξ0
 

= (γ0 /γ)1/2eΓ
 

with Γ
 

= Ib NG Z⊥

 

<1/ BZ >/3E4

●

 

The transverse impedance, Z⊥, 
of individual cells was measured
using RF techniques at LBNL in 
both the original and the new cells.

The transverse impedance of the upgraded cells is only The transverse impedance of the upgraded cells is only 
slightly different than the legacy cells, so BBU growth slightly different than the legacy cells, so BBU growth 
was expected to be similar to previous measurements.was expected to be similar to previous measurements.

f1 f2 f3
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We observe BBU at all of the resonant frequencies of We observe BBU at all of the resonant frequencies of 
the cells, as well as low frequency oscillations at the cells, as well as low frequency oscillations at 
characteristic of ion hose. Both amplitudes are much characteristic of ion hose. Both amplitudes are much 
smaller than the beam radius (r > 3smaller than the beam radius (r > 3--mm). mm). 
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The observed BBU gain is within experimental The observed BBU gain is within experimental 
uncertainty of previous observations.uncertainty of previous observations.



PAC09
May 7, 2009
ce 22

We attribute the lowWe attribute the low--frequency motion to interaction frequency motion to interaction 
with gas liberated in the beamwith gas liberated in the beam--head cleanup zone head cleanup zone 
(BCUZ) by beam scraping on the apertures. (BCUZ) by beam scraping on the apertures. 

•
 
The ion-hose instability is caused by the interaction of the 
beam with a channel of ionized gas. 

•
 
Maximum Growth Factor; Γ

 
~  Ib τpulse L <p/(Ba2)>

–
 

(Growth saturates just like the BBU)

•
 
Because of the strong dependence on τpulse this is only a 
problem for long-pulse beams like DARHT-II

•
 
We maintain a hard vacuum to suppress the ion-hose.

•
 
However, gas liberated by beam scraping on apertures like 
those in the BCUZ can promote ion hose.
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In an our earlier (2005) stability experiments  we In an our earlier (2005) stability experiments  we 
confirmed the theoretical scaling of ionconfirmed the theoretical scaling of ion--hose growth. hose growth. 
We observed an unWe observed an un--predicted further saturation at predicted further saturation at 
high magnetic focusing fields.high magnetic focusing fields.

Theoretical 
prediction 

Expected with  
10-7 Torr 
background 
pressure

Carl Ekdahl, et al., IEEE Trans. Plasma. Sci. Vol. 34, 2006, pp. 460-466
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After exiting the accelerator the beam is sliced into After exiting the accelerator the beam is sliced into 
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95% of the kicked95% of the kicked--pulse current was transported to the pulse current was transported to the 
final focus to form the 4 radiographyfinal focus to form the 4 radiography--source spotssource spots

LIA Exit

Septum

Final Focus
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All four AxisAll four Axis--II radiographic source spots are II radiographic source spots are 
equivalent to the Axisequivalent to the Axis--I spot.I spot.

Pinhole images of Axis-I and Axis-II 
spots were measured with the same 
time-resolved camera system (TRSS)

dLANL = 1.85±0.1 mm on Axis-I

Pulse

dLANL =

dLANL =

dLANL =

dLANL =

Axis-I

Axis-II
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SummarySummary
•

 
DARHT-II has been operated at its full design energy (17 
MeV), current (2 kA), and flat-top pulselength (1.6 μs).

•
 
Beam motion from several sources is understood, 
acceptable, and can be further reduced if required
–

 

Sweep can be significantly reduced by additional steering 
–

 

Ion hose can be reduced by minimizing beam scrape in the BCUZ
–

 

BBU is acceptable, and could be further reduced if need be by 
increasing the solenoidal magnetic focusing field

•
 
Four kicked pulses have been successfully transported to 
the final focus providing excellent radiography spots.
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