Developments in Solid-State Modulator Technology Towards High Availability*

David E. Anderson

*Work performed at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy.

Solid-State Modulators in Vogue

- Inductive Voltage Adder approach
 - DARHT kicker
 - SLAC / LLNL NLC modulator
- "Bouncer" modulator with Hard-Switching
 - CERN / RRCAT modulator
 - Fermilab / DESY bouncer modulator
- Solid-State Marx
 - DTI ILC Marx
 - SLAC Marx
- Traditional scaled converter topology
 - SNS modulators
 - KAERI PEFP modulator

HVCM System Overview

- Operational Statistics
- System Improvement Highlights
- Future Plans
- Conclusion

HVCM Simplified Block Diagram

NACOAK RIDGE National Laboratory

HVCM Major Subsystems

Cavity/Klystron/Modulator Layout

- Multiple HVCM/Klystron Configurations
- Peak Power 11 MW, Average Power 1 MW design

HVCM System Overview

Operational Statistics

- System Improvement Highlights
- Future Plans
- Conclusion

HVCM Lifetime Performance

SYSTEM	SCR Failure*	Mod. Failure*	Hours	
DTL-Mod1	5/ <mark>1</mark>	8/7	22,756	
DTL-Mod3	2	4/ 5	20,828	
DTL-Mod5		1/7	20,781	
CCL-Mod1		3/ <mark>12</mark>	19,831	
CCL-Mod2	1	4/ 5	17,313	ļ
CCL-Mod3	2	4/ <mark>3</mark>	19,076	
CCL-Mod4		1/ <mark>3</mark>	16,888	
SCL-Mod1	1	1/ <mark>2</mark>	18,001	
SCL-Mod5		1/ <mark>2</mark>	18,931	
SCL-Mod9		3/ <mark>6</mark>	17,281	
SCL-Mod12	1	2/ <mark>3</mark>	18,580	
SCL-Mod15	1	1/1	18,357	
SCL-Mod18	0/ <mark>1</mark>	2/ <mark>2</mark>	17,878	
SCL-Mod21		7	18,024	
RFTF Mod	2	1	>2,890	
TOTAL	15/ <mark>2</mark>	44/ <mark>58</mark>	266,965	

•60 Hz operation began April 2008 at ~200 khours
•Overall system goal of 24,000 hours MTBF

8 Managed by UT-Battelle for the U.S. Department of Energ

*failure >1 hour downtime, red since 1/1/08, through 1/1/09

HVCM Fault Details

	Сар	in tank	IGBT	DFDC	Pha se imb alan ce	Arc	IGBT drive	OI	Timing	Fiber	RF	Oil pump	Un- known
9/08	5		6	1	1	1	1	2					
10/08	3		2	6			2		1	1	1		2
11/08	4		7	4		1	1			2			
12/08	0	1	1									1	
total	12	1	16	11	1	2	4	2	1	3	1	1	2

Total Faults: 57 Total "nuisance" trip: 20 recorded Total cap failures: 12

Development and Manufacturing Challenges and Limitations

- Exceed capabilities of circa-2000 power devices
 - Inadequate engineering design margins
 - MTBF analysis based on ideal component lifetimes, actual lifetimes fell short of assumptions
- Manufacturing challenges
 - Magnetics design deficiencies
 - Workmanship/quality concerns
- Expedited schedule didn't allow sufficient testing time, release to manufacturing was premature
- No prototype effort on SCL-variant of system
- Failure modes not sufficiently addressed
 - Power semiconductor fault modes
 - Catastrophic capacitor failures not contained
 - No real-time correction in controller, only fault shutdown capability
- MTTR exceeds estimates

HVCM System Overview

Operational Statistics

System Improvement Highlights

- Future Plans
- Conclusion

SCR Upgrades, Improved Reliability

- Wafer punch-through and edge failures reveal different failure modes
- Improved snubbers to prevent over voltages
- Improved gate drive to prevent punch-through
- Miscellaneous improvements
 - Soft start / phase back prior to shutdown
 - Fast over current protection
 - Faster contactor operation in fault modes

HVCM Basket Assembly

13 N for the U.S. Department of Energy

SCL Modulator Re-Tune

SCL-1. #1:N2=188, C(peak)=3.1nF,V(bank)=2280; #2:N2=188,C(peak)=6.2nF,V(bank)=2060 SCL-1. #3:N2=175, C(peak)=3.1nF,V(bank)=2340; #4:N2=175,C(peak)=6.2nF,V(bank)=2130 SCL-1. #5: N2=169, C(peak)=3.1nF,V(bank)=2390; #6:N2=169,C(peak)=6.2nF,V(bank)=2180

Switching losses at 60 Hz operation resulted in IGBT failure
Changing leakage inductance and resonant capacitance improved I_C
Routine 60 Hz operation now the standard

14 Managed by UT-Battelle for the U.S. Department of Energ

Next-Generation IGBT Gate Driver

- Over Current protection
- Improved drive levels
- Enhanced handshaking with controller
- Vsat monitoring
- Shoot through interlocking

for the U.S. Department of Energy

Next-Generation IGBT Gate Driver Performance

lpri: 500A/ div 3) Ch2; *2 V 'Su's 4) Ch3; 1 V 5;us XFMR Primary spark -5) Ch4 1, 1, V , 5tus

See Nguyen at TU6RFP094 "Advanced Gate Drive for the SNS High Voltage Converter Modulator" for more details

IGBT Next-Generation Development

Next-generation Westcode Press-Pac IGBT devices

- Higher voltage rating (4500 vs. 3300 V), higher current rated recently available (2400, 1800 vs. 1200 A)
- External anti-parallel diode required
- Developed at SLAC with full power testing at ORNL
- See Kemp "Redesign of the H-Bridge Switch Plate of the SNS High Voltage Converter Modulator" at TU6RFP093 for more details

IGBT Alternate Solutions

- Existing 3300 V, 1500 A devices (Eupec/Mitsubushi)
 - ~30% higher switching losses, mainly at turn-off
 - Longer current tails at turn-off
 - Increased losses likely offset any reliability gains from higher current rating...
- Mitsubishi releasing CM1200HG-90R 4500 V/1200 A power module late June 2009
 - Easier to retrofit into existing hardware
 - Needs to be evaluated before choosing a final upgrade
 - No external anti-parallel diode required

Capacitor Failures

- Mfgr.'s cap lifetime ratings 100,000 hours @ 3000 V, Expanded the lifetime on the spec. to 1 million hours
- Experience indicates 10-15 khours $@ \leq 2300 \text{ V}$
- Replaced all warm linac caps w/ higher lifetime spec caps
- Replacing all other caps with new caps, some with poor lifetime history, to "restart" the clock and remove end-of-life units

Future Capacitor Replacement

- Run capacitors until July shutdown
- Assess self-clearing capacitor degradation
- Choose and order capacitor selected
- Install when delivered during 1st FY10 Extended Shutdown Period

RSO Plastic Case

Self-Clearing Metallized Hazy Polypropylene

Start & Finish Pulse IGBT Stress

21 Managed by UT-Battelle for the U.S. Department of Energy National Laboratory

End of Pulse Over Voltage

HVCM System Overview

Operational Statistics

- System Improvement Highlights
- Future Plans
- Conclusion

Pulse Droop Compensation

Turn-off switching losses too high in initial tests
Alternative droop compensation scheme – frequency modulation, phase shift modulation, ???

Next-Generation Controller

- 1. On-board signal analysis and timing feedback
 - Eliminates many nuisance trips, self-correcting
 - Compensates for component drift
 - Flux, VGE, IGBT status, etc. as inputs
 - Allows each phase to terminate 20 kHz half-cycle at end of pulse
- 2. Implement pulse droop feedback
 - Pulse width modulation, frequency modulation, and/or phase modulation
 - Study effects on IGBT and circuit performance
 - True ZCS/ZVS possible? Minimize switching losses?
- 3. National Instruments development tools in-house, need to do system simulations and integrated testing
- 4. Ultimately produce stand-alone dedicated FPGA-based controller units to replace
- 5. Other upgrades incorporate features to support this new controller
- 6. Design for possible redundant IGBT H-bridge in future

Additional Planned Development

- 1. Main energy storage cap bank fast disconnect switch
 - Minimize fault energy available at switch plate
 - Necessary to support possible redundant H-bridge in the future
 - Instrumentation already in place, develop at SLAC
- 2. External and redundant oil pumping
 - Eliminates long MTTR in event of water leak
 - Heat exchanger is contaminating DI water system so needs replacing
 - Faulty pump can be rapidly switched out of system and recovered quickly
- 3. Capacitor bussing improvements to eliminate current ringing
- 4. Improved IGBT Thermal mgmt.
- 5. 20/40 kHz Harmonic Traps on modulator outputs

???Redundant H-Bridge???

- Only conceptual at this point, need to study system interactions
- Could be switched into modulator if another switch plate fails
- Faulty switch plate could be replaced/repaired during scheduled down time
- Controller could perform the "switch" seamlessly between pulses
- Would require oil tank modifications to support an additional phase
- Other planned upgrades support this and are being designed accordingly

Conclusion

- Many of the HVCM subsystems/components have been or will be upgraded to improve reliability
 - Under existing AIP programs
 - Under approved HVCM development work package
- Test stand in place but removed recover in June
- R&D Efforts underway to support future activities
- Collaborative efforts utilized to extend available resources
- Thanks to the SNS HVCM Development Team and the SLAC Power Conversion Department for help with these activities

