LESSONS FROM B-FACTORY OPERATION and SECOND-GENERATION B-FACTORY PROPOSALS

John Seeman SLAC National Accelerator Laboratory

PAC 2009 Vancouver, BC May 4, 2008

Topics

- * e+e- colliders at the Upsilon resonance
- Trends of parameters of former or ongoing five colliders leading to two perhaps future colliders:

- Energy and circumference
- Factors determining luminosity
- Number of bunches and beam currents
- Bunch length and β *s
- IP free space and crossing angles
- Injection
- Beam-beam tune shifts and luminosity
- * Conclusions

Collider Energies and Ring Sizes

Collider	e+ energy	e- energy	Circumference
	(GeV)	(GeV)	(m)
DORIS-II	5.28	5.28	288
VEPP-4M	5.28	5.28	366
CESR	5.28	5.28	768
PEP-II	3.1	9.0	2200
KEKB	3.5	8.0	3016
Super-KEKB	3.5	8.0	3016
Super-B	4	7.0	1800

DORIS-II at DESY (~1978-1984)

*

VEPP-4M at BINP (1983-1985)

CESR at Cornell (1979-2001)

*

PEP-II at SLAC (1999-2008)

KEKB at Tsukuba (2000-2010)

*

Future: Super-B site at Tor Vergata University near Frascati, Italy

SLAC NATIONAL ACCELERATOR LABORATORY

Talk by

M. Biagini

Future: Super-KEKB Tsukuba

SLACE

Luminosity and Beam-Beam Parameter Equations for a Circular e⁺e⁻ Collider

 $\xi_y \text{ is the beam-beam parameter (~0.06)}$ $I_b \text{ is the bunch current (1 to 3 mA)}$ n is the number of bunches (~1700) $\beta_y^* \text{ is the IP lattice optics function (vertical beta) (10 mm)}$ E is the beam energy (3.1 and 9 GeV) (fixed) $Luminosity (10^{33} \text{ cm}^{-2} \text{ s}^{-1})$

$$L = 2.17 \times 10^{34} \frac{n\xi_y EI_b}{\beta_y^*}$$

Number of Bunches and Beam Currents

*	Collider	Bunches	e+ current	e- current	
			(mA)	(mA)	
	DORIS-II	1	42	42	
	VEPP-4M	1	12	12	
	CESR	5x9=45	375	375	
	PEP-II	1722	3210	2070	
	KEKB	1585	1662	1340	
	Super-KEKB	5018	9400	4100	
	Super-B	2500	2800	2800	

ARES in the KEKB Tunnel

Design Parameters

Vc	0.5MV
Ra/Q0	15 Ω
Q ₀	11x10^5
Pin	400kW
Pc	150kW
Us/Ua	9 → 15

KEKB HER SC RF Cavities

PEP-II Radio-Frequency RF System

Each cavity: 850 kV 500 kW 476 MHz HOM loads Ceramic windows

B-Factory RF Klystrons (1.2 MW)

& Astrophysics

Bunch-by-bunch feedback systems (Fox, Barry)

New feedback Kicker design (A. Krasnykh)

*

PEP-II Copper Vacuum System

Cu chambers absorbing 100 W/cm of synchrotron radiation

Total SR power = 5 MW in the HER

LER Magnets and Aluminum Vacuum System

Antechambers Reduce Electron-Cloud-Instability

High power photon stops

LER SR power = 2 MW.

LER Wiggler Chamber (LLNL)

LK_094

Downstream Wiggler Chamber #5

02/03/98

*

Final sliding bellows solution

Positrons: Electron Cloud Instability & Multipacting

Resonance multipacting in solenoid field when the electron time of flight is equal to the bunch spacing

Luminosity drop in "long" mini-trains from ECI \rightarrow Solenoids

Bunch Lengths and $\beta^{\boldsymbol{\star} \boldsymbol{s}}$

Collider	Bunch length	βy*	βx*
	(mm)	(mm)	(mm)
DORIS-II	36	40	630
VEPP-4M	50	50	750
CESR	18	18	1000
PEP-II	11	9	26-50
KEKB	7	6	900
Super-KEKB	3/5	3	200
Super-B	6	0.25/0.35	20/35

Lower β_v^* to increase luminosity

PEP-II Near Interaction Region

Interaction Region Support Tube

MS_140 Support Tube ready for Installation

06/08/98

SuperB Interaction Region Layout View (Jan 2009)

IP Free Space, Crossing Angles, Horizontal Emittance

Collider	L* to 1 st IR Quadrupole	Crossing Angle	ε _x
	(m)	(mrad)	(nm)
DORIS-II	~2	0	571
VEPP-4M	2	0	1333
CESR	0.6	0	211
PEP-II	0.9	0	23-48
KEKB	1.35/1.68	22	20-23
Super-KEKB	~1	30	18-24
Super-B	0.36/0.58	60	2-3

*

PEP-II IR

PEP-II Interaction Region

Super-B Lattice cells (P. Raimondi)

KEKB Crab Crossing

KEKB Crab Cavities

Crab Waist Scheme (Raimondi)

Figure 3-1. Large Piwinski angle and crabbed waist scheme. The collision area is shown in yellow.

Beams distribution at IP E. Paoloni z (mm) Without Crab-sextupoles 0.5 y (µm) 0.0 -0.5-10 z (mm With Crab-sextupoles y (µm) 0.0 -0.5 -10 All particles from both beams collide in the minimum β_v region,

with a net luminosity gain

Super-B IR Lattice with Polarization (W. Wittmer)

Injection

-	
~	

Collider	Injector	Top-off (continuous)
		Detector on
DORIS-II	Linac/Synch	No
VEPP-4M	Synchrotron	No
CESR	Linac/Synch	Possible
PEP-II	Linac/DR	Yes
KEKB	Linac	Yes
Super-KEKB	Linac/DR	Planned
Super-B	Linac/DR	Planned

Running before Trickle (Continuous) Injection (PEP-II)

NATIONAL ACCELERATOR LABORATORY

Continuous Injection for PEP-II

01/29/2008 10:10:15

KEKB Currents and Luminosity April 2009

Beam-Beam Parameter and Luminosity

Collider	ξy*	Luminosity
	(mm)	X 10 ³² /cm ² /s
DORIS-II	0.026	0.33
VEPP-4M	0.059	0.2
CESR	0.068	12.8
PEP-II	0.065	121.
KEKB	0.09	176.
Super-KEKB	0.3-0.5 (plan)	5300 (projected)
Super-B	0.09 (plan)	10000 (projected)
C		Page 42

*

CESR Luminosity and Tune Shift

*

Beam-beam parameters

NAL ACCELERATOR LABORATOR

$$\sigma_{\rm y}^{*} = ~3.5-4.3 \ \mu{\rm m}.$$

 $\xi_y = 0.05 \text{-} 0.06$

 $\xi_{\rm x} = 0.03 - 0.09$

KEKB Specific Luminosity

Specific Luminosity

*

NATIONAL ACCELERATOR LABORATORY

Peak Lyminosities of Various Colliders

*

Collider Luminosity Trends

Conclusions

- There has been a lot of progress in collider design since the first colliders at the Upsilon resonance 30 years ago.
- The recent KEKB and PEP-II B-Factories have been very successful (Nobel prizes this year!)
- Innovations are still being made to significantly enhance the luminosity of a future collider.
- The field is (nearly) technically ready to build the next very high luminosity collider (perhaps Super-B or Super-KEKB).

