Radioactive Ion Beams for Astrophysics

A. Shotter TRIUMF/ University of Edinburgh

→ Astrophysical interest of Radioactive beams
→ Production of Radioactive beams

Internatio

Kepler's First That the planets move i elliptical orbits with the one focus.

Kepler's Second That the speed of the p changes at each mome that the time between the positions is always prop to the area swept out of orbit between these pos

Kepler's Third La That the ratio of the len semi-major axis of each orbit (cubed), to the time or no orbital period (squared), is the same for all planets.

On the Jupiter On the i On the The 13t On the The 15t distant (The spa greater they we SIDEREVS MAGNA, LO Carriella per · providentially ## #\$T\$\$X\$N\$\$\$, 9*0 \$ Patentini Gre VENETH S. Appl I STATISTICS. PURSUES, & STATISTICS.

Published 1610

Pre Kepler / Galileo Observations

Aristotelian Natural philosophy

Truth

Kepler / Galileo

Observations Quantitative measurements

Deduction of logical Quantitative interdependence of Physical quantities

Truth

A most important modern question: what is the composition of matter and energy in the Universe?

- What is dark matter?
- What is dark energy?

How and where are the heavy elements from iron to uranium made?

How did this distribution evolve?

Telescopes/ Spectrometers

Particle accelerators: RIB

Element abundance in the solar system

o 👩 o 🚝 🔎

Abundance curve elements

Revelstoke Meteorite

Each Astrophysical environment produces an abundance fingerprint

Element abundance in other stellar systems

Over 50 element abundances determined for CS22892-52

 $M=[Fe/H] = log(Fe/H)_{star} - log(Fe/H)_{sun}$

$M=[Fe/H] = log(Fe/H)_{star} - log(Fe/H)_{sun}$

Advances in telescopes/ spectrometers \rightarrow greater surveying capability

China:- BFRIB, HIRFL Japan:- RIBF, RARF, TRIAC India:- VEC-RIB Belgium:- CRC Russia:- DRIBS E.U.:- ISOLDE, EURISOL Italy:- EXCYT, SPES Germany:- GSI, FAIR, MAFF France:- SPIRAL, SPIRAL2 United States:- HRIBF, MSU(FRIB) Canada:- ISAC

ISOL + In flight

GANIL - SPIRAL

Diver accelerator Coupled Cyclotrons

Driver Beam light to heavy ions

For ISOL:-

Target power 2 KW

Post Accelerator ~ Cyclotron

The Nuclear Astrophysics Challenge

4He + X(exotic) \rightarrow Y?

Radioactive Ion Beam Factory RIKEN

Facility design goal 350MeV/A Uranium ions up to ~ 10^{13} pps \rightarrow 80kW Current ~ 3* 10⁹ pps (soon *10)

Aim : RIB fragmentation of heavy ions/ fission of U up to 1.5 GeV/u 10¹² pps → up to10,000 increase in intensity over current values Under Construction

FRIB at Michigan State University

EURISOL RIB production target

~ 5*10¹⁵ fissons/s \rightarrow ~200kW + 4MW from primary beam

How and where are the heavy elements from iron to uranium made?

What is the distribution of elements in the Universe?

Instruments

Telescopes/ Spectrometers

How did this distribution evolve?

Instruments

Sciențific instruments

Scientific TRUTH

Sine nobis scientia languet

