

Status of Tevatron Run II

Valeri Lebedev for Accelerator Part of Run II

<u>Contents</u>

- Introduction
- Physics program
- Luminosity performance and projections
- Antiproton production and stacking
- Antiproton Cooling and Accumulation in Recycler
- Tevatron (More details in "Recent Tevatron Operational Experience" by Alexander Valishev, Friday 10:00)
- Conclusions
 - Presentation focus is shifted to Accelerator physics issues
 - Operational strategy and details are in "Optimization of Integrated Luminosity of the Tevatron" by Consolato Gattuso, Monday 17:15

<u>**Tevatron -**</u> P – P <u>Collider Operating at 980 GeV</u>

- H⁻ source, 35mA
- Electrostatic accel. 750 keV
- Linac, 0.4 GeV
- Booster,0.4-8 GeV
- Main injector, 8-150 GeV
- Debuncher,
 8 GeV
- Accumulator,
 8 GeV
- Recycler,8 GeV
- Tevatron,

Run I: 1992 - 1996, JLdt = 0.187 fb⁻¹, (t-quark) 980 GeV
 Run II: started in the summer of 2001, ends - FY2010 ->2011?
 Present JLdt = 6.5 fb⁻¹, (Higgs ?)

<u>Physics Program</u>

- Highest energy collider
- Greatest discovery opportunities before LHC
- Two detectors
 - 1500 collaborators + students and postdocs
 - 60 PhDs last year
- The greatest high energy physics before LHC is operational
 - Higgs boson search
 - Single top
 - W & Z bosons
 - B-physics
 - **♦** ...

 Success critically depends on the luminosity growth

Luminosity Performance and Projections

<u>Collider status and plans</u>

- We are close to the design luminosity set at DoE review in 2003
 - Minor improvements are still possible

Weekly Integrated Luminosity (1/pb)

Status of Tevatron Run II, Valeri Lebedev, PAC-2009, May 4 - 8, Vancouver, Canada

- Luminosity doubling every 1 year and 5 months
- Data analysis ~1.5 year behind (~3 fb)
- We plan to operate to the end of FY'10 (1.5 year)
 - Further Run II extension depends on pace of LHC commissioning

The Energy Frontier: Tevatron Higgs

Present and Planned Collider Parameters

- Original Run II plans were based on high energy physics request (15 fb⁻¹)
- Realistic Operational scenario was build in 2003* (8.5 fb⁻¹ by end of FY'09)
 - Actual pace of the machine performance followed sufficiently close

	Typical for	Planned	Typical for
	April '03	Run II	April '09
Average pbar production rate, 10 ¹⁰ /hour	5.3	32†	21
Pbar transfer efficiency, stack to HEP	59%	80%	80%
Number of protons per bunch, 10 ¹⁰	20	27	28
Number of pbars per bunch, 10 ¹⁰	2.2	13	8.3
Emit. norm. 95%, $(\varepsilon_x + \varepsilon_y)/2$, p/\overline{p} , mm mrad	20/20	18/18‡	18/8
Bunch length, proton/antiproton , cm	62/58	50/50	50/45
Initial luminosity, 10 ³⁰ cm ⁻² s ⁻¹	35	290	320
Store duration, hour	20	15.2	~16
Shot setup time, hour	2	2	1.5
Store hours per week	110	97	~110
Luminosity integral per week, pbarn ⁻¹	4.7	55	55

- * DoE review of June 2003
- † 80% availability for antiproton stacking is assumed
- **‡** Assumed to be limited by beam-beam effects

Luminosity Constituents

- Antiproton production
- Loss at transfers
- Luminosity in Tevatron
 - ~40% pbars are burned in nuclear interactions
 - Major limitations
 - Initial phase density of proton beam
 - IBS
 - Beam-beam effects

<u>Antiproton Production and Stacking^{*}</u>

- Pbar production on the target looks good
 - Desired proton intensity on target achieved in 2006 (8.10¹² every 2.2 s)
 - New lithium lens (diffusion bonded); Oct.2006; gradient: $57 \rightarrow 75 \text{ kG/cm}$
 - New target; Feb. 2009; Better lifetime
- Antiproton fluxes
 - Antiprotons injected to Debuncher: ~38·10¹⁰ hour⁻¹ (2.3·10⁸ every 2.2 s)
 - Antiproton yield of $3 \cdot 10^{-5}$ is in a good agreement with expectations
 - Antiprotons injected to Accumulator ~36·10¹⁰ hour⁻¹ (2.1·10⁸ every 2.2 s)
 - ~5% pbars are outside of cooling range after debunching
 - Peak stacking rate: ~30·10¹⁰ hour⁻¹
 - Stacking rates linearly drops with stack size
- Stacking rate limitations in Accumulator
 - Bandwidth of the stacktail
 - Beam momentum spread coming from Debuncher
 - Stacktail power
 - intermodulation distortions
 - Transverse and longitudinal heating

* More details see in the poster 3246: Pasquinelli, et.al. "Progress in Antiproton Production at the Fermilab Tevatron Collider"

Effective bandwidth of stochastic cooling system

Evolution of Long. distribution is described by Fokker-Planck eq.

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial x} \left(F(x)f \right) = \frac{1}{2} \frac{\partial}{\partial x} \left(D(x) \frac{\partial f}{\partial x} \right)$$

$$F(x) = f_0 \sum_{n=-\infty}^{\infty} \frac{G(x, \omega_n)}{\varepsilon(\omega_n)} e^{i\omega_n T_2 \eta_2 x}, \quad D(x) = N\psi(x) f_0 \sum_{n=-\infty}^{\infty} \frac{1}{|n\eta|} \left| \frac{G(x, \omega_n)}{\varepsilon(\omega_n)} \right|^2, \quad \omega_n = n\omega_0 (1 - \eta x)$$

where $x = \frac{\Delta p}{p}$ and we neglected noise of electronics $_{G(f)}^{1.5}$ $F(x) \propto \operatorname{Re}(G), \quad D(x) \propto |G|^2 \implies \text{Effective bandwidth}$

$$W_{eff}(x) = \int_{0}^{\infty} \operatorname{Re}(G(x, 2\pi f)) df / \sqrt{\int_{0}^{\infty} |G(x, 2\pi f)|^{2} \frac{df}{f}}$$

- Rectangular gain function $G_{\omega}(2\pi f) = \begin{cases} G_0, f \in [f_{\min}, f_{\max}] \\ 0, \text{ otherwise} \end{cases} \quad W_R = \frac{f_{\max} - f_{\min}}{\sqrt{\ln(f_{\max} / f_{\min})}}$
- Linear gain function (G~f)

$$G_{\omega}(2\pi f) = \begin{cases} af, f \in [f_{\min}, f_{\max}] \\ 0, \text{ otherwise} \end{cases} \implies W_{L} = \sqrt{\frac{f_{\max}^{2} - f_{\min}^{2}}{2}}$$

Status of Tevatron Run II, Valeri Lebedev, PAC-2009, May 4 - 8, Vancouver, Canada

0.5

 $\frac{f_{\text{max}}}{2} = 2$

Cooling and Stacking in Accumulator

- 5 cooling systems
 - Core cooling
 - H & V 4-8 GHz
 - Longitudinal: 2-4 GHz and 4-8 GHz
 - Stacktail 2-4 GHz
 - Stacktail system moves injected antiprotons to the core
 - Presently it is a major limitation of stacking rate increase
 - All stacking rate improvements of the last three years are closely related to operation and improvements of the Stacktail system
 - It is the last bottle neck limiting the staking rate

<u>Stacktail system</u>

System of 3 pickups which signals are added with right gains and delays and come through 3 notch filters makes the exponential gain profile in the stacktail area $G(x, \omega) \approx G_{\omega}(\omega) \exp(-x/x_d)$

Van der Meer solution yields the maximum flux

 $J_{\rm max} = T_0 |\eta| x_d W^2$

Measurements of Stack-tail Parameters

- Model takes into account nonlinearity of slip factor
- Dependence of pickup sensitivity on the beam coordinate corresponds to the earlier test-bench measurements
- Frequency response for each of three legs was measured on the revolution frequency harmonics in 1.5 - 5 GHz range with notch filters off at a few radial beam positions
 - Notch filters were measured separately

<u>Stack-tail Model</u>

- Wiring all pieces together (including core cooling) one obtains $G(x, \omega)$
- Static model computes
 - cooling force: G(x)
 - Inverse rate of cooling force change: $E_d \equiv p x_d$
 - Effective bandwidth, W(x)
 - Van der Meer flux, $J_{max}(x)$
- Dynamic model solves Fokker-Planck equation for particle distribution
- Detailed modeling has been absolutely essential to chose upgrade path
 - Equalizers for gain correction
 - Stacktail
 - Longitudinal core, 4-8 GHz
 - Slip-factor increase (optics)

• Final empiric tuning is still required (few picoseconds accuracy!!!)

Dependences on momentum for the cooling force, its phase, effective bandwidth and Van der Meer flux

Test Equalizer specifications

- Phase part corrects phase
- Amplitude part corrects amplitude so that to get the desired total amplitude

$$K_{i}(\omega) = \frac{A_{i}}{1 + iQ_{i}} \frac{\omega^{2} - \omega_{i}^{2}}{\omega\omega_{i}}, \quad i = 1, 2, 3$$
$$K_{A}(\omega) = 1 + 0.91\cos(\omega\tau), \quad \tau = 195 \text{ ps}$$

 $K_{tot}(\omega) = K_A(\omega) \left(K_1(\omega) + K_2(\omega) + K_3(\omega) \right)$

Final equalizer has 5 resonators and one-stage amplitude correction

frequency [GHz]

<u>Stacktail equalizer (continue)</u>

frequency [Hz]

frequency [Hz]

Dependence of effective bandwidth before and after installation of the equalizer (~15% growth) Status of Tevatron Run II, Valeri Lebedev, PAC-2009, May 4 - 8, Vancouver, Canada 17

Stacking Simulations versus Stacking Measurements

Stability diagram at 0.22 s of cycle 46; f=2.25 GHz (cycle period - 2.2 s)

- Comparison of measurements and simulations resulted absolute value for the system gain
 - Signal suppression is close
 to optimum
- Good predictions for stacking rate for known speed of stack propagation
 - Back streaming

First 100 s of stacking; curves are built at 0.88 s in cycle 1, and 0.22 s in cycles 2,4,7,12,22 and 46

Longitudinal Core Heating

- Longitudinal core blowup requires decrease of stacktail gain ⇒ decrease of stacking rate
- Installation of stacktail equalizer worsened the problem
- Drawbacks of the equalizer
 - Decreased signal-to-noise ratio due to larger gain at band edges
 - Not a problem for S-to-N ~15-20 Db
 - Increased effects of intermodulation distortions due to larger power for the same gain
 - Real problem

∆f [kHz]

Schottky noise at a TWT exit in one revolution harmonic

Drawbacks of Stack-tail equalizer (continue)

- Core instability at low frequency band edge (~1.8 GHz)
 - Shallow notches at the band edges for BAW notch filters
- Mitigation of longitudinal core heating
 - Core 4-8 GHz equalizer
 - ~30% bandwidth increase
 - ~1.7 times better cooling
 - One of three BAW notch filters was replaced by SC NF
 - No core instability
- Finite notch depth of 25-35 Db is set by intermods
 - It is a major reason of longitudinal heating
 - No easy/affordable solution

Transverse core heating

v ×

Stacktail is a longitudinal system

• However its kickers also produce transverse quadrupole kicks

- Large betatron phase advance along kicker straight results in insufficient compensation and transverse emittance growth due to
 - Not perfectly zeroed dispersion in the kicker straight
 - Offset of kicker electrical center relative to the beam center
 - kicker electrical center varies with frequency
 - Parametric heating (kickers at ends heat more)
 - It is addressed by swapping core cooling and stack-tail kickers and switching of 3 of 31 kickers

- Open loop stacktail measurements exhibited that the kicker electrical center depends on frequency
 - Resonance at 3.25 GHz, x₀≈2 mm, Q≈27,
 - It results in emittance growth which cannot be suppressed by kicker centering
 - A-kickers with correct amplitude and phase response could be used but
 - Long measurement time
 - Building equalizers
 - Not practical because ⊥ response changes with time
- Presently
 - Kicker centering
 - Stack size reduction; Better \perp core cooling due to equalizers (still in work)

Stacktail open loop measurements at 2.25 GHz (span = f_0) red - original measurements, blue - the same with transverse response being removed

Amplitudes of ∆-kickers required for compensation of dipole part of transverse kicks

Cooling in Debuncher

- If not well tuned both \(\perp \) and L coolings reduce stacking rate
 - ♦ \perp to fit the beam to smaller accumulator acceptance (33 \rightarrow 8 mm mrad)
 - L to fit the beam mom. spread into flattop of cooling force
- Both \(\perp \) and L coolings are power limited
 - Weak dependence of cooling force on eff. bandwidth:
 - $F \propto \sqrt{W}$ instead of $F \propto W^2$ \Rightarrow little help from equalizers
 - \perp cooling
 - Notch filters for bands 3 & 4 reduced common mode signals and effect of thermal noise
 - Optics adjustments improved phase advances and balanced β-functions (A_{beam} = A_{pickups/kicker})
- Longitudinal cooling
 - Better balancing of notch filter legs
 - Two turn delay notch filter switched on at 1 s of
 2.2 s cycle(doubled gain for the same power)

F

Fast transfers

- Three stage antiproton cooling
 - Debuncher $2 \cdot 10^8$ (20 μ A)
 - Accumulator 4·10¹¹ (0−40 mA)
 - Recycler $-4.10^{12} (0-50 \text{ mA})$
 - + electron cooling
- Accumulator-to-Recycler transfers
 - Shortening time
 - ~50 min \rightarrow ~0.5 min
 - Improving transfer efficiency
 - ~90% → ~96%
 - Further shortening of stacking cycle is going
 - Additional 3-5% improvement for antiprotons delivered to Recycler

Antiproton Cooling and Accumulation in Recycler

Recycler ring

- 3.3 km circumference antiproton accumulator operating at 8 GeV
- Stochastic cooling
 - 1: 2-4 GHz, limited by band overlap
 - ||: 1-2 GHz
- Electron cooling
 - 100 mA, $r_b \sim 2.5$ mm, 4.3 MeV, 20 m
- Stochastic & electron coolings supplement each other
 - Electron cooling is
 - extremely efficient for particles with small amplitudes
 - allows to get small emittances with large number of particles
 - but is not effective for particles with large amplitudes
 - ◆ St. cooling cools large amplitude particles ⇒ improves lifetime

Pelletron

Cooling section

Recycler operating scenario

- Barrier buckets keep beam in one ~1.5 km bunch
- RR operates below transition
 - \Rightarrow IBS makes equal temperatures for all three planes
- IBS temperature exchange ~6 times faster than IBS heating
 - for ε=2 mm mrad
 τ_{rel} ~ 0.2 hour
 τ_{IBS} ~ 1.2 hour
- In normal operating conditions the cooling time is ~2 hour (see picture)
 - 7 min for small emittances

Typical cycle of Recycler operation; Transverse emittance computed as average of H&V emittances measured by Schottky monitor. It exceeds the flying wire measurements by ~1.5 times because of non-Gaussian tails created by fast drop of electron cooling efficiency with betatron amplitudes

Beam lifetime in Recycler

- Beam lifetime due to residual gas scattering is ~700 hour
 - It is affected by beam intensity and previous history of beam manipulations (tails)
- To prevent overcooling and subsequent lifetime decrease the electron beam is offset by 2 mm (=> 0.5 mm at shot setup)
 - $\Delta v_{SC} \approx 0.03 \Rightarrow \approx 0.06$ (at shot setup)
- Requirement to limit Δv_{SC} yields that the transverse emittances should grow with beam intensity
 - IBS results in the proportional growth of longitudinal emittance
- Total beam loss in Recycler is ~4% (effective lifetime ~200 ->300 hour)
 - +~4 loss in Accum.-to-Rec. transfers
- Recent shortening of cooling cycle and change of RF manipulations reduced this loss by almost 2 times

Dependence of longitudinal emittance in MI, 8 GeV, on stash size

Beam transverse stability in Recycler

- If not damped the instability will be mainly driven by wall resistivity
 - At lowest mode the instability growth rate $\sim 1.5 \cdot 10^{-3}$ turn⁻¹ (3.6 \cdot 10¹² part.)
- Beam space charge separates coherent and incoherent tunes and suppresses Landau damping
- Stability boundary for Gaussian distribution (Burov, Lebedev, 2008)

$$\sigma_{p} |\xi + n\eta| \approx \frac{0.6 \Delta v_{sc}}{\ln(\Delta v_{sc} / \operatorname{Im}(\Delta v_{coh_{n}}))}$$

- Depends on the coherent tune shift only logarithmically
- High frequency modes are stabilized by Landau damping
- Low frequency modes are stabilized by transverse dampers (H & V)
 - FPGA based digital damper with 212 MHz sampling rate and ~70 MHz bandwidth

Sum and difference BPM signals

<u>Main Injector</u>

- Design proton intensity on the pbar production target was achieved in 2006
 - Now MI delivers beam to pbar (70 kW) and NuMI (300 kW) in the same 2.2 s cycle

- Beam directed to Tevatron is intentionally scraped at 8 GeV in MI.
 - It results in an increase of brightness (N_p / ϵ_{\perp}) and
 - Removes protons with large betatron amplitudes
 - which would be lost in Tevatron due to beam-beam effects
- To accelerate antiprotons through transition
 - 2.5 MHz Recycler bunch is split to ~five 53 MHz bunches at 8 GeV
 - and then coalesced to one 53 MHz bunch at 150 GeV
 - This procedure results in doubling longitudinal emittance and 8% loss in MI with consecutive ~2-4% loss in Tevatron
 - We are considering ways to mitigate this problem

<u>Tevatron</u>

Recent improvements*

- Making Tevatron more stable
 - better orbit stabilization
 - persistent current compensation
 - stable operations, in particular, shot from the same pbar stash
- Good understanding and correction of linear and non-linear optics
 - $\beta^*=35 \rightarrow 28 \text{ cm}$ further reduction is limited by
 - aperture and non-linearity of FF quads
 - Gain of $\int Ldt$ is reduced by hour glass effect ($\sigma_s \sim 45 \rightarrow 65$ cm)
 - Compensation of second order chromaticity (β -function chromaticity)
 - Coupling correction during acceleration
- Opening limiting aperture in vicinity of CDF (summer 2007)
- Intentional pbar emittance blow up before squeeze (6 \rightarrow 8 mm mrad)
- Operational improvements in the squeeze
- Shortening shot setup time: ~2 hour \rightarrow 1 hour
 - Two proton bunches are accelerated in one cycle
 - Instrumentation and software improvements

^{*} More details see in the presentation FR1PBC04 (Friday 10.00): Valishev, "Recent Tevatron Operational Experience" Status of Tevatron Run II, Valeri Lebedev, PAC-2009, May 4 - 8, Vancouver, Canada

Peak luminosity

- Typically the peak Tevatron luminosity is $\sim 3.3 \cdot 10^{32}$ cm⁻²s⁻¹
 - 11.5 collisions per IP ($\sigma_{inelastic}$ =60 mb)
 - that exceeds the peak luminosity where detectors were expected to operate (2003)
 - Both CDF&D0 are close to the maximum but do not know how much more they can digest

- $4 \cdot 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ is not excluded
- Luminosity evolution model developed in 2003 describes stores comparatively well
 - It predicts that if we limit the peak luminosity the only way to increase the integrated luminosity is an increase of antiproton production and a decrease of antiproton loss

Luminosity evolution model

- The model ignores the beam-beam effects
 - Comparison to meas. shows that usually they result in $\leq 10\%$ loss in $\int Ldt$
- All tune shifts (protons, pbars, X, &Y) are ~0.02-0.025 at store beginning
 - Protons suffer more from beam-beam effects because of larger emit.

Model predicts that operation with larger number of antiprotons but the same L_{initial} should result larger luminosity integral

Conclusions

- Growth of luminosity integral would not be possible if increased antiproton production would not be supported by operational improvements in Tevatron and other machines
- The success is based on advances in the accelerator physics, as well as, on the excellence and advances in engineering, instrumentation and machine operation
- It took 8 years. What has been setting the pace?
 - Large scale of the complex
 - Operational status of the collider limits time for studies
 - Each store for hadron collider is unique (no damping)
 - store comparison is not straight forward
 - statistics is important to see an improvement
 - Antiproton production limits how frequently one can do another trial
 - Large number of steps in the collider shot setup
 - error at any place affects the final result
- Tevatron operates at the design luminosity
 - Minor improvements are still possible
 - Luminosity integral will be approximately doubled by the end of FY"11

Collider History

- 1986-1987 Engineering Run
 - ♦ .05 pb⁻¹
- 1988-1989
 - ◆ 9.2 pb⁻¹
- Run Ia (1992-1993)
 - ◆ 32.2 pb⁻¹
- Run Ib (1994-1996)
 - 154.7 pb⁻¹ (196 pb⁻¹ cumulative)
- Run II (2001-2011)
 - 12,000 pb⁻¹ planned (60 times of Run I)

<u>17 steps up in '02-05 \rightarrow 1.1717 = 15 times (V. Shiltsev)</u>

 Optics AA->MI lines fixed 	Dec'01	~25 %	
 New LB squeeze helix, TEL-1 abort 	Mar'02	~40 %	
 "New-new" injection helix 	May'02	~15 %	
 AA Shot lattice vs IBS 	July'02	~40 %	
 Tev BLT/inst. dampers at injection 	Sep'02	~10 %	
 Pbar coalescing improved in MI 	Oct'02	~5 %	
 CO Lambertsons Removed 	Feb'03	~15 %	
 S6 circuit tuned/SEMs removed 	June'03	~10 %	
 "5 star" helix on ramp 	Aug'03	~2 %	
 Reshimming/Alignment 	Nov'03	~12 %	
 Longer Stores/ MI dampers 	Feb'04	~19 %	
 2.5MHz AA → MI trnsf/Cool shots 	April'04	~8 %	
 Reduction of beta* to 35 cm 	May'04	~26 %	
 Shots from Recycler 	July'04	~20%	
 Slip Stacking in MI 	Mar'05	~20%	
 Tev Octupoles at 150 GeV 	April'05	~5%	
 Reduction of beta* to 28 cm 	Sep'05	~8 %	
2006 improvements			
 Pbar production task force 	Feb'06	~10 %	
 Tevatron 150 GeV helix→ more p's 	June'06	~10 %	
• Tev collision helix \rightarrow lifetime	July'06	~15 %	
 New RR WP → emittances 	Sep'06	~25 %	

Sequence of major events for the Antiproton source

- Dec'05-Deb. optics and steering
- Feb'06 Larger gain for 4-8 long. core cooling; 18->20 mA/hour
- July-Aug/06 Tuning injector chain pre-shutdown param. restored
- Oct. 1, 2006 Stacktail polarity flip \Rightarrow peak st. rate: 20 \Rightarrow 22 mA/hour
- Dec'06 New Li-lens
- March"07: Equalizer prototype for stacktail: $22 \Rightarrow 24 \text{ mA/hour}$
 - First attempt
 - Installation wit reduced gain at high *f*
 - Final installation
- April 3, 2007: Legs 2 & 3 pulled away
- May 16, 2007: Accumulator optics change
- May 4, 2007, Leg 3 is fully operational
 - New lithium lens lost
- June 4, 2007: Final Equalizer for stacktail
- July 18, 2007 Notch filter #3: BAW (Bulk Acoustic Wave) \Rightarrow SC
- August, 2007 Equalizer for longitudinal core
- 2008, Double notch filter in Debuncher

- March 12, 2007
- March 19, 2007
- March 23, 2007

- May 24, 2007

Dependence of Computed Antiproton yield on Debuncher acceptance and lithium lens gradient

Measurements of Stack-tail Parameters and Numerical Model

- Measured dependence of slip factor on the momentum is fitted by polynomial
 - Decent coincidence with Accumulator optics model
 - Non-linearity of η is amplified by ~2 times due to proximity to γ_{tr}
- Dependence of pickup sensitivity on the beam coordinate corresponds to the earlier test-bench measurements

Record stash 498E10 (19-Apr-09, for shot #6987)

- Partial mining; no hard limits for the stash size
 - Life time does degrade

Example: losses between transfers while stashing for #6990

Courtesy of A. Shemyakin Status of Tevatron Run II, Valeri Lebedev, PAC-2009, May 4 - 8, Vancouver, Canada