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Outline of the talk

Introduction
Geometric impedance of tapered transitions:

small angle approximation in the impedance theory
elliptical tapers
frequency dependence of the impedance for gradual tapers

Optical approximation—the high frequency limit of the
impedance

Using parabolic equation in the impedance theory

Resistive wall impedance of inserts

Conclusion and outlook

There are some other important contributions to the theory of
impedance left outside of this talk: CSR impedance, resistive
wall impedance in the limit of large skin depth, time
dependent wakefields, etc.
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Do we need an analytical theory of impedance?

A remarkable progress over the last decade in development of
computer codes significantly advanced our capabilities in
calculation of wakefields and impedances for accelerators. Do we
need a theory?

The theory allows a quick evaluation of the impedance and
often gives scalings of how impedance depends on various
parameters of the problem. Codes require more effort (and
money).

A new code is usually benchmarked against the theory

A good theory can simplify numerical approach to the
problem and allows to advance to a region of parameter where
codes are either too slow or require large computer resources
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Small-angle tapers: motivation

Long, small-angle tapers which are often used to minimize the
abruptness of vacuum chamber transitions.

An example from the NSLS-II design (A. Blednykh): σz = 4.5 mm,
LTaper = 18 cm.
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Tapered axisymmetric transitions

Yokoya (1990) derived both the longitudinal and transverse
impedances of a) a small-angle axisymmetric transition in b) the
low-frequency approximation

Z⊥ = −
iZ0

2π

∫
dz

(
a ′

a

)2

∼
1

L

Z0 = 4π/c = 377 Ohm
a = a(z) the radius of the pipe, |a ′|� 1

Podobedov and Krinsky (2006) found higher-order correction terms
in a ′.
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Conical taper and higher-order terms

Conical transition with angle θ con-
nects two pipes of radii a1 and a2

(a2 > a1):

Z⊥ = −
iZ0

πaav

ε tan θ

1 − ε2

where aav = (a1 + a2)/2 and
ε = (a2 − a1)/(a2 + a1).

Podobedov and Krinsky (2006) found a leading order correction for
the conical taper

Z⊥ = −
iZ0

πaav

ε tan θ

1 − ε2

(
1 −

0.18

ε
tan θ

)
Using several fitting parameters, they also found interpolation
formulas for the impedance of the taper that provide an excellent
approximation for 0 < θ < π/2 and 0 < ε < 1.
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Non-round tapers and large aspect ratio transitions

Wide transitions are often used
in practice.
For a non-axisymmetric tran-
sitions with reflection sym-
metry there are two dipole
impedances Z⊥y , Z⊥x and a
quadrupole one ZQ .

It was found [Stupakov (1996,1997,2007)] that the impedance of a
rectangular transition with a large aspect ratio is ∼ w/g times larger than
that of a round one with the same length L

Z⊥y = −
i

4
wZ0

∫
dz

(g ′)2

g3

w is the (constant) width in the x direction
g = g(z) is the (varying) gap of the taper in the y direction
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Tapers with elliptic cross section
Podobedov and Krinsky (2007)
calculated the impedance of a
taper with confocal elliptical
cross sections and confirmed a
similar scaling with the width of
the ellipse in the limit of large
aspect ratios.

Z⊥y = −
iπ

16
Z0

∫
dz

(ρ ′)2

ρ3

ρ(z) = tanh−1[b(z)/a(z)]

a and b are the major (horizontal) and minor (vertical) semiaxes of
the elliptical cross section.
In the limit of large aspect ratio, a� b, it follows from this
formula that Z⊥y ∝ a.
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Conditions of applicability—geometric

For the round geometry a� L, or a small angle taper,
θ ∼ a/L� 1.

For a large aspect ratio rectangular transition, in addition to
requirement of small angle, it is required that w � L; similarly
a� L for the elliptic case, [Podobedov and Krinsky (2007)].

For a very wide taper, g � L� w the vertical impedance as a
function of width w saturates at w ∼ L and does not increase with
the width when w becomes larger than L [Krinsky (2005)].
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Conditions of applicability—low-frequency

For the round geometry, Yokoya’s formula is valid for

k � L/a2

k = ω/c .

For a wide rectangular transition the inductive regime is valid for
k � L/w2 [Stupakov (2001)]. Impedance at higher frequencies
exhibits a more complicated dependence on ω.

Numerical simulations [Podobedov and Krinsky (2007)] partially
confirmed the theoretical model at higher frequencies, but also
showed some discrepancies.
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High-frequency impedance computation: motivation

With the quest toward high-current high-brightness beams, the
bunch length becomes extremely short. Examples: for ILC
σz = 300 microns, for LCLS σz = 20 microns. One is interested in
impedances at frequencies with λ ∼ 2πσz .

A TESLA-type superconducting cavity with the fundamental and
higher mode asymmetric couplers. The couplers introduce
wakefields that kick the beam in the transverse direction and can
degrade the emittance [K. Bane et al., paper TUPP019, EPAC08].
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High-frequency approximation in electrodynamics

The limit of very high frequency in classical electrodynamics is
geometric optics. Light propagates (in vacuum) along straight
lines and is reflected by metal surfaces. Can one apply this
approximation in the theory of impedances?

Example: the longitudinal impedance
of a step transition does not de-
pend on ω at high frequencies
(Heifets&Kheifets, 1991). For a step-
out and an iris (Z0 = 377 Ohm)

Z‖ =
Z0

π
ln

a

b
.
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General optical theory of impedance

A comprehensive impedance theory in optical approximations:
Bane, Stupakov and Zagorodnov (2007).

Main features of the theory

Applicable for arbitrary 3D geometry

Allows to compute both longitudinal and transverse
impedances (through the Panofsky-Wenzel theorem
Z⊥ = c

ω∇r2Z‖)

The longitudinal impedance is purely resistive and does not
depend on frequency
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The optical theory—example

SA – cross section of incoming pipe
SB – cross section of outcoming pipe
Sap is the minimal cross-section of the transition

The longitudinal impedance does
not depend on frequency

Z‖(r1, r2) =
1

2πc
I (r1, r2) .

Wakefield is proportional to delta
function of s

w‖(r1, r2, s) =
1

2π
δ(s)I (r1, r2) .

where r1 = (x1, y1) – 2D position
of the leading point charge
r2 = (x2, y2) – 2D position of the
trailing point charge,

SapSB SA
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Result of the optical theory

The factor I

I =

∫
SB

∇φ1,B(r) · ∇φ2,B(r) dS −

∫
Sap

∇φ1,A(r) · ∇φ2,B(r) dS .

with ∇ = x̂∂/∂x + ŷ ∂/∂y . The potential φ satisfies Poisson’s
equation with delta functions on the RHS:

∇2φ1,B(r) = −4πδ(r − r1) , ∇2φ2,B(r) = −4πδ(r − r2) ,

with boundary conditions φ1,B = φ2,B = 0 on the wall of pipe B
(and similar for φ1,A).
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Various geometries treated in optical approximation
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Comparison with numerical simulations

Results of the optical theory are compared with ECHO, a 3D,
time-domain finite difference program that calculates wakefields of
an ultra-relativistic bunch (I. Zagorodnov).

Test example: the transverse kick factor for a thin, round iris of
radius g in a large beam pipe.

Kick factor vs bunch length
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Parabolic equation for the electromagnetic field

Diffraction phenomena lie beyond the limits of the optical
approximation. They can be accounted for in a simplified
treatment based on a so called parabolic equation.

The parabolic equation in the diffraction theory was proposed
many years ago [Leontovich and Fock, (1946)]. It is also a
standard approximation in the FEL theory; it was applied to the
beam radiation problems in a toroidal waveguide [Stupakov and
Kotelnikov (2003), Agoh and Yokoya (2004)] and in free space
[Geloni et al. (2005)].

Applicability of PE in the high-frequency limit of the impedance is
based on the observation that in this case the main contribution to
the impedance comes from the electromagnetic waves that
propagate at small-angles to the axis of the pipe [Stupakov (2006)].
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Parabolic equation for electromagnetic field

One introduces the envelope part of the electromagnetic field

Ê(x , y , z ,ω) =

∫
dt eiωt−ikz E(x , y , z , t).

The transverse (with respect to the direction of motion of the beam)
component Ê⊥, satisfies PE

∂

∂z
Ê⊥ =

i

2k

(
∇2
⊥Ê⊥ −

4π

c
∇⊥ ĵz

)
ĵz is the Fourier transformed projection of the beam current in the
direction z .

The longitudinal electric field Êz can be expressed through div Ê⊥.

PE eliminates the small wavelength 2π/k from the problem. The
longitudinal scale L in that equation is of the order of 1/ka2, where a is
the transverse size of the problem. As a result, the numerical solution of
PE requires coarser spatial meshes.
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Conical collimator example

The collimator has two tapered transitions of length 30 mm from
radius of 5 mm to radius of 2.5 mm. It also has a central part (2.5
mm radius) of length of 30 mm.
The result is compared with the ECHO code.
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At ω → ∞, Re Z = (Z0/π) ln(amax/amin) = 83 Ohm, in
agreement with the optical theory.
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Impedance of resistive wall inserts

A pipe with a high wall conductivity (perfect conductor) has a
short resistive insert of length Li .

A naive approach to the case of an insert would be to multiply the
impedance per unit length of an infinite pipe by the length of the
insert Li . This is true in the limit of low frequencies, ks0 � 1,
where s0 = (2a2/Z0σ)1/3 (σ is the wall conductivity, a is the pipe
radius) [Stupakov (2005)].
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Impedance of resistive wall inserts

At high frequencies, when ks0 � 1, the detailed analysis [Krinsky
et al, (2004)] reveals several regimes in this problem.

One can use long-pipe approximation for the impedance of
long inserts, when Li � ka2

In an intermediate regime when a2/s3
0k2 � Li � ka2 the

impedance does not depend on conductivity and is equal to
the twice the diffraction impedance of a pill-box cavity of
length Li

Z‖ =
Z0(1 − i)

πa

√
cLi

πω

For very short inserts, a2/s3
0k2 � Li ,

Z‖ = Li
cZ0

4π

1 − i

ca

√
ω

2πσ
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Impedance of resistive wall inserts

sg =
√

Li
2σZ0

0 1
ks0

1

ksg

Li
cZ0

4π

1 − i

ca

√
ω

2πσ

small frequency RW

Li
cZ0

4π

4i

a2ω

high frequency RW

Z0(1 − i)

πa

√
cLi

πω

diffraction
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Conclusion and outlook

We have a good understanding of the impedance at low
frequencies for gradual tapers and collimators including large
aspect ratio geometries. Further research is needed to
generalize and validate these results in the region of high
frequencies.

Optical theory gives us a simplified treatment of the
high-frequency limit of the impedance for many practically
important 3D geometries. It can be improved by usage of the
parabolic equation approximation. A combination of these
methods with existing computational should make feasible
calculation of the exact Green functions (wake of a point
charge) for many geometries.

A complete theory of the RW impedance of round inserts is
now available. A study of nonaxisymmetric geometries is
desirable.
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